Zorya Shapiro
The topic of this article may not meet Wikipedia's notability guideline for academics. (June 2021) |
Zorya Shapiro | |
---|---|
Born | December 7, 1914 |
Died | July 4, 2013 | (aged 98)
Citizenship | Soviet |
Alma mater | MSU Faculty of Mechanics and Mathematics |
Known for | Shapiro-Lopatinski condition in elliptic boundary value problems |
Spouse | Israel Gelfand |
Scientific career | |
Fields | representation theory |
Thesis | (1938) |
Zorya Yakovlevna Shapiro (Russian: Зоря Яковлевна Шапиро; 7 December 1914 – 4 July 2013) was a Soviet mathematician, educator and translator. She is known for her contributions to representation theory and functional analysis in her collaboration with Israel Gelfand, and the Shapiro-Lobatinski condition in elliptical boundary value problems.
Life
[edit]Zorya Shapiro attended the Moscow State University Faculty of Mechanics and Mathematics from where she received her undergraduate and doctoral degrees by 1938.[1] She was active in the military department of the university, especially in aviation, learning to fly and land aeroplanes.[2]
She started her teaching career at the Faculty, shortly after Zoya Kishkina (1917–1989) and Natalya Eisenstadt (1912–1985), and very quickly became recognized for her courses in analysis.[1]
Shapiro married Israel Gelfand in 1942. They had 3 sons, one of whom died in childhood.[3] Shapiro and Gelfand later divorced.[4]
In the 1980s, Shapiro lived in the same house as Akiva Yaglom.[5] In 1991 Shapiro moved to River Forest, Illinois to live with her younger son. She died there on 4 July 2013.
Career
[edit]Shapiro published several works on representation theory. A contribution (with Gelfand) in integral geometry was to find inversion formulae for the reconstruction of the value of a function on a manifold in terms of integrals over a family of submanifolds, a result with applicability in non-linear differential equations, tomography, multi-dimensional complex analysis and other domains.[6] Another work was on the representations of rotation groups of 3-dimensional spaces.[7]
Shapiro is best known for her elucidation of the conditions for well-defined solutions to the elliptical boundary value problem on Sobolev spaces.[8]
Selected publications
[edit]Articles
[edit]- "О существовании квазиконформных отображений". Доклады АН СССР. 30 (8). 1941.
- "Об эллиптических системах уравнений с частными производными". Доклады АН СССР. XLVI (4): 146–149. 1945.
- "Первая краевая задача для эллиптической системы дифференциальных уравнений" (PDF). Математический сборник. 28(70) (1): 55–78. 1951.
- "Представления группы вращений трёхмерного пространства и их применения". УМН. 7 (1(47)): 3–117. 1952. (with I.M. Gelfand)
- "Об общих краевых задачах для уравнений эллиптического типа" (PDF). Известия АН СССР. 17 (6): 539–565. 1953.
- "Однородные функции и их приложения" (PDF). Успехи математических наук. 10 (3(65)): 3–70. 1955. (with I.M. Gelfand)
- "Об одном классе обобщённых функций" (PDF). Успехи математических наук. 13 (3(81)): 205–212. 1958.
- "Интегральная геометрия на многообразии k-мерных плоскостей". Доклады АН СССР. 168 (6): 1236–1238. 1966. (with I.M. Gelfand, M.I. Graev)
- "Интегральная геометрия на k-мерных плоскостях" (PDF). Функциональный анализ и его приложения. 1 (1): 15–31. 1967. (with I.M. Gelfand, M.I. Graev)
- "Дифференциальные формы и интегральная геометрия" (PDF). Функциональный анализ и его приложения. 3 (2): 24–40. 1969. (with I.M. Gelfand, M.I. Graev)
- "Интегральная геометрия в проективном пространстве". Функциональный анализ и его приложения. 4 (1): 14–32. 1970. (with I.M. Gelfand, M.I. Graev)
- "Локальная задача интегральной геометрии в пространстве кривых" (PDF). Функциональный анализ и его приложения. 13 (2): 11–31. 1979. (with I.M. Gelfand, S.G. Gindikin)
Books
[edit]- Representations of the rotation and Lorentz groups and their applications. Macmillan. 1963. (with I.M. Gelfand, R.A. Minlos)
Translations
[edit]From French
[edit]- Jean Leray (1961). Дифференциальное и интегральное исчисления на комплексном аналитическом многообразии. Moscow: Foreign Literature.
From English
[edit]- Stanislaw Ulam (1964). Collection of Mathematical Problems [Нерешённые математические задачи]. Moscow: Nauka.
- Robert Finn (1989). Equilibrium Capillary Surfaces [Равновесные капиллярные поверхности: Математическая теория]. Moscow: Mir.
References
[edit]- ^ a b Vladimir Tikhomirov (2010). "Прогулки с И.М. Гельфандом". Семь Исскуств. 11 (12).
- ^ Vladimir Tikhomirov (2011). Ровесники Октября. Litres. p. 6. ISBN 9785040175239.
- ^ "Israel Gelfand". The Daily Telegraph. 26 October 2009. Retrieved 28 October 2018.
- ^ Thomas Maugh (2 November 2009). "Mathematics genius had it all figured out". The Sydney Morning Herald. Retrieved 28 October 2018.
- ^ "Akiva M. Yaglom, Dec. 2, 1988; Part 2". Retrieved 28 October 2018.
- ^ David Kazhdan (2003). "Works of I. Gelfand on the theory of representations" (PDF). An International Conference on "The Unity of Mathematics": 5.
- ^ A.A. Yushkevich (5 September 2017). "Колмогоров на моем пути в математику". Колмогоров в воспоминаниях учеников. p. 425. ISBN 978-5-457-91890-0.
- ^ Katsiaryna Krupchyk; Jukka Tuomela (2006). "The Shapiro–Lopatinskij Condition for Elliptic Boundary Value Problems". LMS Journal of Computation and Mathematics. 9: 287–329. doi:10.1112/S1461157000001285.