Wikipedia:Reference desk/Archives/Mathematics/2024 December 11
Mathematics desk | ||
---|---|---|
< December 10 | << Nov | December | Jan >> | Current desk > |
Welcome to the Wikipedia Mathematics Reference Desk Archives |
---|
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages. |
December 11
[edit]Unique normal ultrafilter
[edit]So I'm supposed to know the answer to this, I suppose, but I don't seem to :-)
"Everyone knows" that, in , Gödel's constructible universe relative to an ultrafilter on some measurable cardinal , there is only a single normal ultrafilter, namely itself. See for example John R. Steel's monograph here, at Theorem 1.7.
So I guess that must mean that the product measure , meaning you fix some identification between and and then say a set has measure 1 if measure 1 many of its vertical sections have measure 1, must not be normal. (Unless it's somehow just equal to but I don't think it is.)
But is there some direct way to see that? Say, a continuous function with such that the set of fixed points of is not in the ultrafilter no singleton has a preimage under that's in the ultrafilter? I haven't been able to come up with it. --Trovatore (talk) 06:01, 11 December 2024 (UTC)