Jump to content

User:SciTechWrite/sandbox

From Wikipedia, the free encyclopedia

User:SciTechWrite/sandbox/1

Controlled-environment agriculture

Controlled Environment Agriculture (CEA) consists of crop production systems in greenhouses or other structures that use horticulture and engineering techniques beyond conventional soil-based outdoor production. These systems may increase yields, improve access to local foods, provide year-round food access and/or improvement nutritional outcomes relative to traditional large-scale outdoor farming.[1] The aim of CEA is to provide protection from the outdoor elements and maintain optimal growing conditions throughout the development of the crop. Production takes place within an enclosed growing structure such as a greenhouse or plant factory.[2]

The term CEA covers two major sectors: plant growing systems that evolved from greenhouse or  aquaculture based structures requiring light[3] and mushroom (fungi) growing systems that evolved from fully enclosed structures with limited lighting.[4]

Plants are grown in a soilless medium in order to supply the proper amounts of water and nutrients to the root zone as well as supplemental lighting to ensure a sufficient daily light integral. CEA optimizes the use of resources such as water, energy, space, capital and labor. CEA plant growing technologies include hydroponics aeroponics aquaculture, and aquaponics [2]

Mushrooms (see Fungiculture) are grown in a compost medium with temperature, humidity, lighting, supplemental nutrients and atmospheric supplements, such as Oxygen or CO2, added depending on the type of crop. [4]

Different techniques are available for growing food in controlled environment agriculture.

As of 2019 the mushroom industry was the largest CEA sector in the US by facilities and with total values of sales.[5]

The greenhouse industry is the second largest component of the CEA industry but another quickly growing segment is the vertical farming industry. Controlled Environment Agriculture has the ability to produce crops all year round, with the possibility of increased yield by adjusting the amount of carbon and nutrients the plants receive (Benke et al).[3]

In consideration to urban agriculture, CEA can exist inside repurposed structures, built to purpose structures or in basements and subterranean spaces.[4] The trend is increasingly growing into alternative food networks, as entrepreneurs and households seek to meet the growing demand for fresh food products.[5]

Facilities

CEA farms are mainly located in buildings resembling warehouses, but other types of structured are used as well. Although CEA shares some of the characteristics of greenhouses, mushroom farms and other indoor agricultural practices, they require different types of buildings, technologies and workforce skills, such as software programming. CEA is also distinct from medical marijuana growing and processing.[5] In contrast to CEA systems used for greens and herbs, mushrooms can be produced in locations with minimal infrastructure and capital to start and sustain production. Mushroom production can be adapted to abandoned and underutilized farm infrastructure including barns, outbuildings, high tunnels and storage facilities.[6]

Technical implementation

[edit]

Controllable variables:


Environmental:


! Temperature (air, nutrient solution, root-zone, leaf)

! Relative Humidity (%RH)

! Carbon dioxide (CO2)

Light (intensity, spectrum, duration and intervals)

Cultural:


Water Quality

Nutrient concentration (PPM of Nitrogen, Potassium, Phosphorus, etc) Nutrient pH (acidity)

! Cropping duration and density

! Cultivar

! Pest controls

CEA facilities can range from fully 100% environmentally controlled enclosed closed loop systems, to automated glasshouses with computer controls for watering, lighting and ventilation. Low-tech solutions such as cloches or plastic film on field grown crops and plastic-covered tunnels are referred to as modified environment agriculture.

CEA methods can be used to grow literally any crop, though the reality is a crop has to be economically viable and this will vary considerably due to local market pricing, and resource costs. After mushrooms,[8] tomatoes, leafy greens and herbs are the most economically viable crops.[6]

Motivation

[edit]

Crops can be grown for food, pharmaceutical and nutriceutical applications. It can also be used to grow algae for food or for biofuels.

CEA methods can increase food safety by removing sources of contamination, and increases the security of supply as it is unaffected by outside environment conditions and eliminates seasonality to create a stable market pricing, which is good for both farmers and consumers. The use of monitoring software and automation can greatly reduce the amount of human labor required.

CEA is used in research so that a specific aspect of production can be isolated while all other variables remain the same. For example, the use of tinted greenhouse glass could be compared to clear glass in this way during an investigation into photosynthesis.[7]

A February 2011 article in the magazine Science Illustrated states, "In commercial agriculture, CEA can increase efficiency, reduce pests and diseases, and save resources. ... Replicating a conventional farm with computers and LED lights is expensive but proves cost-efficient in the long run by producing up to 20 times as much high-end, pesticide-free produce as a similar-size plot of soil. Fourteen thousand square feet of closely monitored plants produce 15 million seedlings annually at the solar-powered factory. Such factories will be necessary to meet urban China's rising demand for quality fruits and vegetables."[8]

Advantages of CEA over traditional field farming:[9]


! Water efficiency[10]

! Space use efficiency

! Reduced transportation requirements Reliable year-round production Protection from adverse weather events Reduce fertilizer runoff

Pleasant working conditions

Urban impacts

[edit]

According to the findings of a USDA workshop in 2018:

indoor agriculture (IA) in urban and near-urban areas has the potential to act as a consistent,

local, and accessible producer and distributor of fresh produce. If these farms are placed strategically, this possibility of local food production, processing, and distribution could be especially impactful for urban areas without reliable access to affordable and fresh produce. Such farms could also have far-reaching impacts in traditionally underserved communities by creating opportunities for training employment and business development in an emerging sector.[11]

Industry

[edit]

For mushrooms, as of mid-2021, reportedly 20.762 million square feet of indoor mushroom farms were operating in the United States.[9]

For plants, as of mid-2021, reportedly 16.55 million square feet (380 acres / 154 hectares) of indoor plant farms were operating around the world. The State of Indoor Farming annual report suggests this will grow to 22 million sq. ft. (505 acres / 204 hectares) by 2022.[12] (By comparison, the USDA reported 915 million acres (38 million hectares) of farmland in the United States, alone, in 2012.) [13]


As of 2018, an estimated 40 indoor vertical farms exist in the United States, some of which produce commercially sold produce and others which are not yet selling to consumers.[14] Another source estimates over 100 startups in the space of 2018.[15] In Asia, adoption of indoor agriculture has been driven by consumer demand for quality.[16] The Recirculating Farms Coalition is a US trade organization for hydroponic farmers.[17]

A 2020 survey of indoor plant farming in the U.S.[18] found that indoor production was:


26% leafy greens

20% herbs

16% microgreens

10% tomatoes

28% other

AeroFarms, founded in 2011, raised $40 million in 2017 and reportedly opened the largest indoor farm in the world in Newark, New Jersey in 2015;[19] by 2018 it built its 10th indoor farm.[19] As of June 2023, AeroFarms filed for Chapter 11 bankruptcy protection citing "significant industry and capital market headwinds".[20]

Premier Mushroom, founded in 2001 as Colusa Mushrooms, was reportedly one of the first, nearly fully closed-loop food growing  CEA facilities in the United States with a farm located in Colusa, California.[10]. Premier Mushroom went through bankruptcy restructuring in 2004 and 2009[11], was eventually sold to an international operator in 2020.[12]

Economics

[edit]

The economics of indoor farming has been challenging, with high capital investment and energy operating costs[11]—particularly the price of electricity—and several startups shut down as a result.

[21] A 2018 U.S. survey found only 51% of indoor farming operations profitable.[22]


A 2020 U.S. survey found that typical indoor agriculture crops, per pound of crop yield, consumed between US$0.47 (for leafy greens) and US$1.38 (for microgreens) in inputs (especially seed, growing media, and nutrients) -- though tomatoes were reported at US$0.06 inputs per pound. Labor costs for container farms were reported at US$2.35 per pound. However, the same survey noted that indoor agriculture yields more revenue per pound than conventional field agriculture.

[23]

In the Asia-Pacific region, where burgeoning population growth conflicts with burgeoning space requirements for agriculture to feed the population, indoor farming is expected to have a compound annual growth rate (CAGR) of 29%, growing from a 2021 value of US$0.77 billion to a 2026 value of US$2.77 billion.[12]

Advances in LED lighting have been one of the most important advances for improving economic viability.[14][12] The high financial cost of investing in CEA presents a challenge that can only be overcome through research & development to innovate sustainable practices. The production potential of these farm networks justifies the investment in infrastructural value and contributes towards the 2030 SDGS to combat carbon footprint.[5]

Organic agriculture

[edit]

In 2017, the US National Organic Standards Board voted to allow hydroponically grown produce to be labeled as certified organic [17]

See also

[edit]

Fungiculture

Building-integrated agriculture

Controlled Environment Agriculture Center (CEAC) at the University of Arizona          

Controlled Environment Agriculture-Cornell University

Vertical farming

   Center of Excellence for Indoor Agriculture

   The Controlled Environment Agriculture Global Association

External links

[edit]

[1] Trends, Insights and Future Prospects for Production in Controlled Environment Agriculture and Agrivoltaic Systems, USDA, January 2024, https://primary.ers.usda.gov/publications/pub-details?pubid=108220

Controlled Environment Agriculture (CEA), FarmTech Society, https://farmtechsociety.org/controlled-environment-agriculture-cea/

About CEA, Controlled Environment Agriculture, Cornell University,  https://cea.cals.cornell.edu/about-cea/

Controlled Environment Agriculture, (CEA), Chester County Planning Commission, https://www.chescoplanning.org/MuniCorner/eTools/76-CEA.cfm


Urban Agriculture Tool Kit (https://www.usda.gov/sites/default/files/documents/urban-agricultur e-toolkit.pdf), U.S. Dept. of Agriculture

"Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture" (https://www.ars.usda.gov/ARSUserFiles/40820/Shamshi ri2018%20-%20controlled%20environment%20urban%20agriculture%20review.pdf), January, 2018, Int J Agric & Biol Eng, Vol. 11 No.1, copied at USDA.gov

"Indoor agriculture quickly gaining speed" (https://vegetablegrowersnews.com/article/indoor-agr iculture-quickly-gaining-speed/), May 21, 2015, Vegetable Growers News, retrieved January 9, 2022 (extensive data).

References

[edit]

1.  Trends, Insights and Future Prospects for Production in Controlled Environment Agriculture and Agrivoltaic Systems, USDA, January 2024

2.  Ting, K.C.; Lin, T.; Davidson, P.C. (9 November 2016). "Integrated Urban Controlled Environment Agriculture Systems" (https://link.springer.com/chapter/10.1007/978-981-10-184 8-0_2) LED Lighting for Urban Agriculture 19–36. doi:10.1007/978-981-10-1848-0_2 (https://d oi.org/10.1007%2F978-981-10-1848-0_2) ISBN 978-981-10-1846-6

3.  "Controlled Environment Agriculture Center" (http://ceac.arizona.edu/). University of Arizona Retrieved 2015-08-16

4.  Benke, Kurt and Bruce Tomkins. 2017. "Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture." Sustainability: Science, Practice and Policy 13 (1): 13-26.


[1] Trends, Insights and Future Prospects for Production in Controlled Environment Agriculture and Agrivoltaic Systems, USDA, January 2024

[2] Definition of Controlled Environment Agriculture, Global Consortium for Controlled Environment Agriculture, Home Page, https://ceaglobal.org/

[3] Indoor Production: Indoors: Economics of Growing, Cornett University, https://smallfarms.cornell.edu/projects/mushrooms/indoor-production/

[4] Basic Procedures for Agaricus Mushroom Growing, Penn State University, https://extension.psu.edu/basic-procedures-for-agaricus-mushroom-growing

[5] USDA 2019 Mushrooms Report Highlights, https://www.nass.usda.gov/Publications/Highlights/2019/2019mushrooms_report.pdf

[6] How It Works, Controlled Environment Agriculture, Chester County Planning Commission, https://www.chescoplanning.org/MuniCorner/eTools/76-CEA.cfm

[7] Indoor Production: Indoors: Economics of Growing, Cornett University, https://smallfarms.cornell.edu/projects/mushrooms/indoor-production/

[8] USDA 2019 Mushrooms Report Highlights, https://www.nass.usda.gov/Publications/Highlights/2019/2019mushrooms_report.pdf


[9]

[10] Mushroom Growing In A Nearly Closed-Loop System , Natalie Forsythe, November 18, 2011, Innovating Smart.Org  http://www.innovatingsmart.org/group/theinnovations/forum/topics/john-ashbaugh-ceo-of-premier-mushrooms

[11] Schultz v. Chandler, United States Court of Appeals, Ninth Circuit, FindLaw, https://caselaw.findlaw.com/court/us-9th-circuit/1673111.html

[12] Premier Sold to Farmer's Fresh, Mushroom Business, February 13, 2020, https://mushroombusiness.com/news/premier-sold-to-farmers-fresh/

  1. ^ Dohlman, Erik; Maguire, Karen; Davis, Wilma V.; Husby, Megan; Bovay, John; Weber, Catharine; Lee, Yoonjung. "Trends, Insights, and Future Prospects for Production in Controlled Environment Agriculture and Agrivoltaics Systems". www.ers.usda.gov. Retrieved 2024-12-14.
  2. ^ Kozai, Toyoki (2016). Led lighting for urban agriculture. New York, NY: Springer Berlin Heidelberg. ISBN 978-981-10-1846-6.
  3. ^ "The Controlled Environment Agriculture Global Association". ceaglobal.org. Retrieved 2024-12-14.
  4. ^ "Indoor Production - Cornell Small Farms". smallfarms.cornell.edu. 2019-06-04. Retrieved 2024-12-14.
  5. ^ Commission, Chester County Planning. "Chester County Planning Commission". www.chescoplanning.org. Retrieved 2024-12-14.
  6. ^ "Indoor Production - Cornell Small Farms". smallfarms.cornell.edu. 2019-06-04. Retrieved 2024-12-14.