Jump to content

User:Kekyseto/sandbox

Coordinates: 36°08′55″N 140°04′37″E / 36.14861°N 140.07694°E / 36.14861; 140.07694
From Wikipedia, the free encyclopedia
High Energy Accelerator
Research Organization
高エネルギー加速器研究機構
Established1 April 1997
HeadquartersTsukuba, Ibaraki, Japan
Director General
Atsuto Suzuki
AffiliationsMinistry of Education, Culture, Sports, Science and Technology
Websitehttp://www.kek.jp/en/

L'Organisation de recherche avec des accélérateurs de haute énergie (KEK) (高エネルギー加速器研究機構, Kō Enerugī Kasokuki Kenkyū Kikō), connue sous le nom de KEK , est une organisation japonaise dont le but est d'exploiter le plus grand laboratoire de physique des particules au Japon, situé à Tsukuba , préfecture d' Ibaraki . Il a été créé en 1997. [1] Le terme "KEK" est également utilisé pour désigner le laboratoire lui-même, qui emploie environ 695 employés. [2] La fonction principale de KEK est de fournir les accélérateurs de particules et autres infrastructures nécessaires à la physique des hautes énergies , à la science des matériaux ,biologie structurale , science des rayonnements , informatique , transmutation nucléaire , etc. De nombreuses expériences ont été construites au KEK par les collaborations internes et internationales qui en ont fait usage. Makoto Kobayashi , professeur émérite à KEK, est connu dans le monde entier pour ses travaux sur la violation des CP et a reçu le prix Nobel de physique 2008 .

36°08′55″N 140°04′37″E / 36.14861°N 140.07694°E / 36.14861; 140.07694

Histoire

[edit]

KEK a été créé en 1997 dans le cadre d'une réorganisation de l'Institut d'études nucléaires, de l'Université de Tokyo (créée en 1955), du Laboratoire national de physique des hautes énergies (créé en 1971) et du Meson Science Laboratory de l'Université de Tokyo (établi en 1988). Cependant, la réorganisation n'était pas une simple fusion des laboratoires susmentionnés. En tant que tel, KEK n'était pas le seul nouvel institut créé à l'époque, car tout le travail des institutions mères ne relevait pas de la physique des hautes énergies; par exemple, le Center for Nuclear Study, l'Université de Tokyo, a été créé simultanément pour la physique nucléaire à basse énergie dans le cadre d'un partenariat de recherche avec RIKEN .

KEK was established in 1997 in a reorganization of the Institute of Nuclear Study, the University of Tokyo (established in 1955), the National Laboratory for High Energy Physics (established in 1971), and the Meson Science Laboratory of the University of Tokyo (established in 1988).[1] However, the reorganization was not a simple merge of the aforementioned laboratories. As such, KEK was not the only new institute created at that time, because not all of the work of the parent institutions fell under the umbrella of high energy physics; for example, the Center for Nuclear Study, the University of Tokyo, was concurrently established for low energy nuclear physics in a research partnership with RIKEN.

  • 1971: Création du Laboratoire national de physique des hautes énergies (KEK).
  • 1976: Le synchrotron à protons (PS) produit un faisceau eV 8 G tel que conçu. Le PS a atteint 12 GeV.
  • 1978: Fondation de l'installation d'utilisation du synchrotron Booster et d'une usine de photons (PF).
  • 1982: Le PF réussit à stocker un faisceau d' électrons de 2,5 GeV .
  • 1984: l'accélérateur d'accumulation de stockage à anneau transposable à Nippon (TRISTAN) accélère un faisceau d' électrons à 6,5 GeV.
  • 1985: L'AR accélère un faisceau de positons à 5 GeV.
  • 1986: l'anneau principal (MR) de TRISTAN accélère les faisceaux d' électrons et de positons à 25,5 GeV.
  • 1988: l'énergie MR est portée à 30 GeV à l'aide de cavités accélératrices supraconductrices .
  • 1989: Création des départements Accelerator et Synchrotron Radiation Science à la Graduate University for Advanced Studies .
  • 1994: Début de la construction de l'usine B de KEKB .
  • 1995: Fin des expériences TRISTAN ( AMY , JADE, TOPAZ, VENUS).
  • 1997: Création de la High Energy Accelerator Research Organization.
  • 1998: Premier stockage de faisceaux à l' anneau KEKB (KEK B-factory).
  • 1999: Début de l' expérience d'oscillation de neutrinos à longue base ( K2K ). L' expérience Belle au KEKB a commencé.
  • 2001: Début de la construction d'accélérateurs de protons à haute intensité ( J-PARC ).
  • 2004: Devient l'organisation de recherche sur les accélérateurs d'énergie de la Corporation de l'Institut de recherche interuniversitaire. L' expérience K2K s'est terminée.
  • 2005: Ouverture du Tokai Campus. Les expériences sur PS ont pris fin.
  • 2006: Création du Centre J-PARC .
  • 2008: le professeur Makoto Kobayashi a remporté le prix Nobel de physique 2008 .
  • 2009: La construction de J-PARC est terminée.
  • 2016: Premiers tours et stockage réussi des faisceaux dans les anneaux d' électrons et de positons SuperKEKB [3]
  • 2017: Achèvement du `` roll-in de l' expérience Belle II à Tsukuba, au Japon.
  • 2018: Premières collisions de faisceaux SuperKEKB à l'intérieur du détecteur Belle II [4]

Organization

[edit]

KEK has four main laboratories

Scientists in KEK conduct training for Ph.D. course students of the School of High Energy Accelerator Science in the Graduate University for Advanced Studies.

Location

[edit]
  • Tsukuba Campus: 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
  • Tokai Campus: 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan

Particle accelerators

[edit]

Current complex

[edit]
BELLE detector
KEK e+/e- Linac
  • KEK e+/e- Linac: A linear accelerator complex had injected 8.0 GeV electrons and 3.5 GeV positrons to KEKB. The linac also provides 2.5 GeV electrons for PF and 6.5 GeV electrons for PF-AR. The Linac has been upgraded for SuperKEKB.
  • Accelerator Test Facility (ATF): A test accelerator is focused on generating a super low-emittance beam. This is one of the essential techniques for realizing a future electron-positron linear collider. The beam energy of electrons is 1.28 GeV in normal operation.
  • Superconducting RF Test Facility (STF): A test facility to build and operate a test linac with high-gradient superconducting cavities, as a prototype of the main linac systems for International Linear Collider (ILC).
  • Japan Proton Accelerator Research Complex (J-PARC): A proton accelerator complex consisting primarily of a 600 MeV linac, a 3 GeV synchrotron and 50 GeV synchrotron. J-PARC was built with a collaboration between KEK and JAEA, and is used for nuclear physics, particle physics, muon science, neutron science, Accelerator-Driven System (ADS) and a range of other applications.
  • KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states.[2]

Shutdown complex

[edit]
  • Proton Synchrotron (PS): An accelerator complex to accelerate protons up to 12 GeV. PS had consisted primarily of a 750 keV pre-accelerator, a 40 MeV linac, a 500 MeV booster synchrotron and a 12 GeV main ring. PS had been used for nuclear and particle physics. PS also had provided the 12 GeV proton beam to a neutrino beam line in KEK for a KEK to Kamioka (K2K) experiment. PS achieved its design energy of 8 GeV in 1976. PS was shut down in 2007.
  • Neutrino Beam Line: A beam line to drive neutrinos into Super-Kamiokande, which is about 250 km away from KEK, and a neutrino oscillation experiment named K2K had been conducted from 1999 to 2004. A neutrino oscillation experiment named Tokai to Kamioka (T2K) has been conducted using J-PARC since 2009.
  • Transposable Ring Intersecting Storage Accelerator in Nippon (TRISTAN): An electron-positron collider had been operated from 1987 to 1995. The main purpose was detecting top quark. The electron and positron energy were 30 GeV. TRISTAN had three detectors: TOPAZ, VENUS and AMY. KEKB was built through the use of the tunnel of TRISTAN.

Running and future plans

[edit]
  • SuperKEKB: An electron-positron collider, consisting of a 7 GeV electron storage ring and a 4 GeV positron storage ring, to achieve higher luminosity by means of increasing the beam current, focusing the beams at the interaction point and making the electromagnetic beam-beam interactions small. The target luminosity has been set to 8×1035 cm−2 s−1, about 60 times higher than the KEKB's original design value. SuperKEKB has adopted a nano-beam scheme. KEK will build a new damping ring in order to generate the nano scale positron beam. On October, 2010 the Japanese government formally approved the SuperKEKB project, and on June, 2010 an initial budget of 100 million dollars (¥100 = $1) for a Very Advanced Research Support Program was assigned for 2010-2012. The total budget is about 315 million dollars (¥100 = $1) by the program. The upgrade will be completed, and the first collisions have been conducted in 2018. The highest luminosity will be achieved in 2021. Belle II experiment will be conducted using SuperKEKB.
  • Compact Energy Recovery Linac (cERL): A test accelerator for a future synchrotron light source named Energy Recovery Linac (ERL). cERL will study the uncertainty of the accelerator physics in the ERL through the beam experiments. The beam commissioning in cERL will be scheduled from 2013 with a 35 MeV electron beam. KEK has a plan that will build 5 GeV ERL, provides ultra-high brightness and ultra-short pulsed synchrotron light, after the cERL experiments.
  • International Linear Collider (ILC): A future electron-positron linear collider consisting of superconducting cavities with a length of approximately 31 kilometers in length and two damping rings, for electrons and positrons, with a circumference of 6.7 kilometers. The electron and positron energy will be up to 500 GeV with an option to upgrade to 1 TeV. Nearly 300 laboratories and universities around the world are involved in the ILC: more than 700 people are working on the accelerator design, and another 900 people on detector development. The accelerator design work is coordinated by the Global Design Effort, and the physics and detector work by the World Wide Study.[3]

Computers[4]

[edit]
Blue Gene

KEK has computers which are fastest class in Japan, and Computing Research Center in KEK manages the computer systems. The theoretical operation performance of SR16000, a super computer made by HITACHI, is 46 TFLOPS. The theoretical operation performance of Blue Gene Solution, a super computer made by IBM, is 57.3 TFLOPS. These super computers had been used to study quantum chromodynamics and numerical accelerator physics mainly, and these super computers have been shut down in order to introduce a next super computer in the future. Computing Research Center also manages the other computer systems: KEKCC, B-factory Computer System and Synchrotron Light Computer System.

KEK hosted the first web site in Japan on September 30, 1992. The original web site can still be seen.[5]

See also

[edit]

References

[edit]
  1. ^ Cite error: The named reference history was invoked but never defined (see the help page).
  2. ^ T. Iwashita ; et al. (2011). "KEK digital accelerator". Physical Review Special Topics: Accelerators and Beams. 14 (7): 071301. Bibcode:2011PhRvS..14g1301I. doi:10.1103/PhysRevSTAB.14.071301.
  3. ^ ILC-Facts and figures
  4. ^ Computing Research Center in KEK
  5. ^ First web site in Japan (Japanese)
[edit]


Category:Particle physics facilities Category:Research institutes in Japan Category:Tsukuba, Ibaraki Category:Physics institutes Category:Organizations established in 1997 Category:1997 establishments in Japan