Jump to content

Quantum entanglement swapping

From Wikipedia, the free encyclopedia

Quantum entanglement swapping is a quantum mechanical concept to extend entanglement from one pair of particles to another, even if those new particles have never interacted before. This process may have application in quantum communication networks and quantum computing.

History

[edit]
Anton Zeilinger, contributor to the concept and realization of entanglement swapping
Artur K. Ekert, contributor to the concept and realization of entanglement swapping
  • 1992: Yurke and Stoler show theoretically that entanglement does not require interaction of the final measured particles.[1][2]: 876 [3]: 786
  • 1993: The term "entanglement swapping" came from physicists Marek Żukowski, Anton Zeilinger, Michael A. Horne, and Artur K. Ekert in their 1993 paper. They refined the concept to show one can extend entanglement from one particle pair to another using a method called Bell state measurement.[4]
  • 1998: Jian-Wei Pan working in Anton Zeilinger's group conducted the first experiment on entanglement swapping. They used entangled photons to show successful transfer of entanglement between pairs that never interacted.[5]
  • 2000s: Later experiments took this further, making it work over longer distances and with more complex quantum states.[citation needed]

Concept

[edit]

Basic principles

[edit]

Quantum entanglement swapping has three pairs of entangled particles: (A, B), (C, D), & (E, F). Particles A & B are initially entangled, as are particles C & D. One particle from each pair is projected (call them B and C) onto one of the for possible Bell states, a process called a Bell state measurement. The unmeasured particles (A and D) can become entangled. This happens without any direct interaction between them.[6][5]

Mathematical representation

[edit]

The mathematical expression for the swapping process is:[2]: 876 

In this expression, refers to an entangled state of X & Y particles while BSM indicates Bell state measurement. A Bell state is one of four specific states of representing two particles with maximal entanglement; a Bell state measurement projects a quantum state onto this basis set.[3]: 813 

[edit]

Quantum teleportation

[edit]

Entanglement swapping is one form of quantum teleportation, where the state of a particle can be sent from one location to another.[7]

Potential applications

[edit]

Quantum cryptography

[edit]

In the field of quantum cryptography, it helps secure communication channels better. By utilizing swapped entanglements between particles' pairs, it is possible to generate secure encryption keys that should be protected against eavesdropping.[8]

Quantum networks

[edit]

Quantum entanglement swapping also serves as a core technology for designing quantum networks, where many nodes-like quantum computers or communication points-link through these special connections made by entangled links. These networks may support safely transferring quantum information over long routes.[9]

Quantum repeaters and long-distance communication

[edit]

Quantum entanglement swapping may allow the construction of quantum repeaters to stretch out quantum communication networks by allowing entanglement to be shared over long distances. Performing entanglement swapping at certain points acts like relaying information without loss.[10][11]

References

[edit]
  1. ^ Yurke, Bernard; Stoler, David (1992-03-02). "Einstein-Podolsky-Rosen effects from independent particle sources". Physical Review Letters. 68 (9): 1251–1254. Bibcode:1992PhRvL..68.1251Y. doi:10.1103/PhysRevLett.68.1251. ISSN 0031-9007.
  2. ^ a b Horodecki, Ryszard; Horodecki, Pawel; Horodecki, Michal; Horodecki, Karol (2009). "Quantum entanglement". Reviews of Modern Physics. 81 (2): 865–942. arXiv:quant-ph/0702225. Bibcode:2009RvMP...81..865H. doi:10.1103/RevModPhys.81.865. S2CID 59577352.
  3. ^ a b Pan, Jian-Wei; Chen, Zeng-Bing; Lu, Chao-Yang; Weinfurter, Harald; Zeilinger, Anton; Żukowski, Marek (2012-05-11). "Multiphoton entanglement and interferometry". Reviews of Modern Physics. 84 (2): 777–838. arXiv:0805.2853. Bibcode:2012RvMP...84..777P. doi:10.1103/RevModPhys.84.777. ISSN 0034-6861.
  4. ^ Żukowski, M.; Zeilinger, A.; Horne, M. A.; Ekert, A. K. (27 December 1993). ""Event-ready-detectors" Bell experiment via entanglement swapping". Phys. Rev. Lett. 71 (26): 4287. Bibcode:1993PhRvL..71.4287Z. doi:10.1103/PhysRevLett.71.4287. Retrieved 1 September 2024.
  5. ^ a b Pan, J.-W.; Bouwmeester, D.; Weinfurter, H.; Zeilinger, A. (1998). "Experimental entanglement swapping: Entangling photons that never interacted". Phys. Rev. Lett. 80 (18): 3891–3894. Bibcode:1998PhRvL..80.3891P. doi:10.1103/PhysRevLett.80.3891.
  6. ^ Ji, Zhaoxu; Fan, Peiru; Zhang, Huanguo (2022). "Entanglement swapping for Bell states and Greenberger–Horne–Zeilinger states in qubit systems". Physica A: Statistical Mechanics and Its Applications. 585 (585): 126400. arXiv:1911.09875. Bibcode:2022PhyA..58526400J. doi:10.1016/j.physa.2021.126400.
  7. ^ Hu, Xiao-Min; Guo, Yu; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can (2023). "Progress in quantum teleportation". Nat. Rev. Phys. 5 (6): 339–353. Bibcode:2023NatRP...5..339H. doi:10.1038/s42254-023-00588-x. Retrieved 1 September 2024.
  8. ^ Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. (2002). "Quantum cryptography" (PDF). Rev. Mod. Phys. 74 (1): 145–195. arXiv:quant-ph/0101098. Bibcode:2002RvMP...74..145G. doi:10.1103/RevModPhys.74.145.
  9. ^ Lu, Chao-Yang; Yang, Tao; Pan, Jian-Wei (10 July 2009). "Experimental Multiparticle Entanglement Swapping for Quantum Networking". Phys. Rev. Lett. 103 (20501): 020501. Bibcode:2009PhRvL.103b0501L. doi:10.1103/PhysRevLett.103.020501. PMID 19659188. Retrieved 1 September 2024.
  10. ^ Shchukin, Evgeny; van Loock, Peter (13 April 2022). "Optimal Entanglement Swapping in Quantum Repeaters". Phys. Rev. Lett. 128 (15): 150502. arXiv:2109.00793. Bibcode:2022PhRvL.128o0502S. doi:10.1103/PhysRevLett.128.150502. PMID 35499889. Retrieved 1 September 2024.
  11. ^ Briegel, H.-J.; Dür, W.; Cirac, J. I.; Zoller, P. (1998). "Quantum repeaters:The role of imperfect local operations in quantum messages". Phys. Rev. Lett. 81 (26): 5932. doi:10.1103/PhysRevLett.81.5932.

Further reading

[edit]
[edit]