Order-8 pentagonal tiling
Appearance
Order-8 pentagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 58 |
Schläfli symbol | {5,8} |
Wythoff symbol | 8 h 5 2 |
Coxeter diagram | |
Symmetry group | [8,5], (*852) |
Dual | Order-5 octagonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the order-8 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,8}.
Related tilings
[edit]Regular tilings: {n,8} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Hyperbolic tilings | ||||||||||
{2,8} |
{3,8} |
{4,8} |
{5,8} |
{6,8} |
{7,8} |
{8,8} |
... | {∞,8} |
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (5n).
Finite | Compact hyperbolic | Paracompact | ||||
---|---|---|---|---|---|---|
{5,3} |
{5,4} |
{5,5} |
{5,6} |
{5,7} |
{5,8}... |
{5,∞} |
See also
[edit]Wikimedia Commons has media related to Order-8 pentagonal tiling.
References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
[edit]- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch