Order-5 heptagonal tiling
Appearance
Order-5 heptagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 75 |
Schläfli symbol | {7,5} |
Wythoff symbol | 5 | 7 2 |
Coxeter diagram | |
Symmetry group | [7,5], (*752) |
Dual | Order-7 pentagonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the order-5 heptagonal tiling is a regular tiling of the hyperbolic plane, which holds the Schläfli symbol of {7,5}.
Related polyhedra and tiling
[edit]Spherical | Hyperbolic tilings | |||||||
---|---|---|---|---|---|---|---|---|
{2,5} |
{3,5} |
{4,5} |
{5,5} |
{6,5} |
{7,5} |
{8,5} |
... | {∞,5} |
This tiling is topologically related as a part of sequence of regular tilings with heptagonal faces[1][2], starting with the heptagonal filing, holding the Schläfli symbol {7,n}, and Coxeter diagram , whereas n is progressing towards infinity.
See also
[edit]References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
- Weisstein, Eric (2007-08-07). "Making MathWorld". The Mathematica Journal. 10 (3). doi:10.3888/tmj.10.3-3. ISSN 1097-1610.
- Weisstein, Eric W. "Klein Quartic". MathWorld. Retrieved January 3, 2025.
- "Hyperbolic Planar Tesselations". www.plunk.org. Retrieved 2025-01-03.
- Weisstein, Eric W. "Schläfli Symbol". MathWorld. Retrieved January 3, 2025.
- ^ Weisstein, Eric (2007-08-07). "Making MathWorld". The Mathematica Journal. 10 (3). doi:10.3888/tmj.10.3-3. ISSN 1097-1610.
- ^ "Hyperbolic Planar Tesselations". www.plunk.org. Retrieved 2025-01-03.