List of star extremes
Appearance
A star is a massive luminous spheroid astronomical object made of plasma that is held together by its own gravity. Stars exhibit great diversity in their properties (such as mass, volume, velocity, stage in stellar evolution, and distance from Earth) and some of the outliers are so disproportionate in comparison with the general population that they are considered extreme. This is a list of such stars.
Records that are regarded as authoritative and unlikely to change at any given point are recorded on a white background, while those that could change with new information and/or discoveries are recorded on a grey background.
Age and distance
[edit]Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Nearest star | Sun | 3rd century BC | 1 AU | Our local star's distance was first determined in the 3rd century BC by Aristarchus of Samos. | Reported for reference | ||
Second-nearest star | Proxima Centauri | 1915 | 1.30 pc | Also called Alpha Centauri C, it is the outlying star in a trinary star system that includes Alpha Centauri A (Rigil Kentaurus) and Alpha Centauri B (Toliman). This is currently the nearest known neighbouring star to our own Sun. This star was discovered in 1915, and its parallax was determined at the time, when enough observations were established. | [NB 1] | [1][2] | List of nearest stars and brown dwarfs |
Most distant individually seen star | WHL0137-LS (Earendel) | 2022 | z= 6.2 ± 0.1
12.9 Gly |
[3][4] | List of the most distant astronomical objects | ||
Most distant star | Stars in JADES-GS-z14-0 | 2024 | z= 13.27
13.6 Gly (light travel distance) |
[5] | List of the most distant astronomical objects | ||
Most distant star gravitationally bound to Milky Way galaxy | ULAS J0015+01 | 2014 | 900,000 light-years | Located in the Milky Way's extreme outer halo, far beyond the galactic disc. | [6] | ||
Oldest star | 2MASS J18082002−5104378 | 2018 | 13.53 billion years | [7][8] | List of oldest stars | ||
Youngest | Stars are being formed constantly in the universe so it is impossible to tell which star is the youngest. For information on the properties of newly formed stars, see Protostar, Young stellar object and Star formation. |
Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Nearest sun-like star | Alpha Centauri A & B |
1839 | 1.34 parsecs (4.4 ly) | This was the third star whose parallax was determined. Before Alpha Centauri, the record was held by 61 Cygni, the first star whose parallax was determined. | [NB 1][NB 2][NB 3] | ||
Nearest normal star | Alpha Centauri C (Proxima Centauri) |
1915 | 1.30 parsecs (4.2 ly) | Before Proxima, the title had been held by Alpha Centauri A & B. | [NB 1][NB 3] | [9][10] | |
Nearest red dwarf | Before Proxima, the title had been held by Barnard's Star | ||||||
Nearest degenerate star | Sirius B | 1852 | 8.6 light-years (2.6 pc) | This is also the nearest white dwarf. | [NB 4] | ||
Nearest subdwarf | Kapteyn's Star | 1898 | 12.83 light-years (3.93 pc) | Kapteyn's star is either a sdM1 subdwarf[11] or a M1.5V main-sequence star.[12][13] WISEA 1810−1010 is the nearest undisputed subdwarf, at 29.03 light-years (8.90 pc). [14] | [15] | ||
Nearest borderline subgiant | Procyon | 11.5 light-years (3.5 pc) | All stars closer to the Sun are main sequence or degenerate stars or brown dwarfs. | ||||
Nearest undisputed subgiant | Delta Pavonis | 19.9 light-years (6.1 pc) | A subgiant, but only slightly brighter than the Sun. | ||||
Nearest "true" giant star | Pollux | 33.8 light-years (10.4 pc) | List of nearest giant stars | ||||
Nearest red giant | Arcturus | 36.7 light-years (11.3 pc) | |||||
Nearest supergiant | Canopus | 309 light-years (95 pc) | While it is frequently described as a yellow supergiant, especially in evolutionary terms,[16] it is classified as a bright giant based on spectrum.[17] | [16] | List of nearest supergiants | ||
Nearest hypergiant | μ Cephei (Herschel's Garnet Star) | 3,060 light-years (940 pc) | [18] | ||||
Nearest carbon star | CW Leonis | 310 light-years (95 pc) | |||||
Nearest F-type star | Procyon A | 11.46 light-years (3.51 pc) | [19] | ||||
Nearest A-type star | Sirius A | 8.6 light-years (2.6 pc) | |||||
Nearest B-type star | Regulus A | 79.3 light-years (24.3 pc) | [20] | ||||
Nearest O-type star | Zeta Ophiuchi | 366 light-years (112 pc) | [21] | ||||
Nearest Wolf–Rayet star | Gamma Velorum | 1,080 light-years (330 pc) | |||||
Nearest neutron star | RX J1856.35-3754 | 2000 | 400 light-years (120 pc) | [22][23][24] | |||
Nearest white dwarf | Sirius B | 1852 | 8.6 light-years (2.6 pc) | Sirius B is also the second white dwarf discovered, after 40 Eridani B. | [9][25][26] | ||
Nearest brown dwarf | Luhman 16 | 2013 | 6.5 light-years (2.0 pc) | This is a pair of brown dwarfs in a binary system, with no other stars. | [27] | ||
Nearest Luminous Blue Variable | P Cygni | 5,251 light-years (1,610 pc) | [28] |
Brightness and power
[edit]Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Brightest star from the Earth: Apparent magnitude | Sun | prehistoric | m=−26.74 | Reported for reference [NB 5][NB 6] |
|||
Brightest star other than the Sun | Sirius (Alpha Canis Majoris) |
prehistoric | m= −1.46 | [NB 5][NB 6][NB 7][NB 1] | List of brightest stars | ||
Brightest star in a transient event | Progenitor of SN 1006 | 1006 | m= −7.5 | This was a supernova, and its remnant (SNR) is catalogued as PKS 1459-41 | [NB 5][NB 6][NB 1] | [29] | |
Dimmest star from the Earth | UDF 2457 | m= 25 | [NB 5][NB 6] | ||||
Most luminous star | LGGS J004246.86+413336.4 | 2022 | L= 19,953,000 LSun | [30] | List of most luminous stars | ||
Most luminous star in a transient event | Progenitor of GRB 080916C | 2008 | V=−40 | The star exploded in a gamma-ray burst with the total energy equal to 9,000 supernovae | [NB 8] | List of gamma-ray bursts | |
Least luminous normal star | 2MASS J0523−1403 | 2013 | V=20.6 | [NB 3][NB 8] | [31] | ||
Most energetic star | R136a1 | 2010 | B=-12.5 | [NB 9] | [32] | List of most luminous stars | |
Most energetic star in a transient event | Progenitor of GRB 080916C | 2008 | [NB 9] | ||||
Least energetic normal star | 2MASS J0523−1403 | 2013 | L=0.000126LSun | [NB 3][NB 9] | [31] | ||
Hottest normal star | WR 102 | T= 200,000 K (200,000 °C; 360,000 °F) | [33] | List of hottest stars | |||
Coolest normal star | S Cassiopeiae | T= 1,800 K (1,530 °C; 2,780 °F) | [34] | List of coolest stars |
Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Hottest degenerate star | CSPN of NGC 4361 | 2019 | 270,000 K (486,000 °F) | [35] | |||
Hottest neutron star | PSR B0943+10 | 3,100,000 K (5,580,000 °F) | [36] | ||||
Coolest neutron star | PSR B1257+12 | 28,856 K (51,481 °F) | |||||
Hottest white dwarf | KPD 0005+5106 | 2008 | 200,000 K (360,000 °F) | [37] | |||
Hottest PG 1159 star/GW Vir star | RX J2117+3412 | 1999 | 170,000 K (306,000 °F) | [38] | |||
Coolest brown dwarf | WISE 1828+2650 | 250–400 K (−23–127 °C; −10–260 °F) | WISE 0855−0714 may be cooler at 225–260 K, but its status as a rogue planet or sub-brown dwarf is not well known as its mass is between 3 and 10 MJ. |
Size and mass
[edit]Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Largest apparent size star | Sun | prehistoric (3rd century BC) |
31.6′ – 32.7′ | The apparent size of the Sun was first measured by Eratosthenes in the 3rd century BC,[39] who was the second person to measure the distance to the Sun. However, Thales of Miletus provided a measurement for the real size of the Sun in the 6th century BC, as 1⁄720 the great circle of the Sun (the orbit of the Earth)[40] | Reported for reference [NB 6] |
||
Largest extrasolar apparent size star | R Doradus | 1997 | 0.057" | This replaced Betelgeuse as the largest, Betelgeuse having been the first star other than the Sun to have its apparent size measured. | [NB 6][NB 1] | [41] | |
Smallest apparent size star | Thousands of neutron stars located on the other side of the galaxy, likely impossible to resolve. | [NB 6] | |||||
Largest star | VY Canis Majoris | 2024 | r=1,420 R☉ | Consistent with the upper limit for red supergiants of roughly 1,500 R☉ based on the four largest stars measured in a survey, which is consistent with the current stellar evolutionary theory.[42] WOH G64 was the previous candidate[43] but was later found to be a smaller yellow hypergiant.[44] | [45][46] | List of largest known stars | |
Smallest star | EBLM J0555-57Ab | 2017 | 0.084 R☉ | [NB 3] | [47][48][49] | List of smallest stars | |
Most massive star | BAT99-98 or R136a1 | 2014, 2022 | 226 M☉, 196+34 −27 M☉ |
This exceeds the predicted limit of 150 M☉, previously believed to be the limit of stellar mass, according to the leading star formation theories. R136a1 considered the most massive known by the scientific community.[50] | [NB 10] | [51][50] | List of most massive stars |
Least massive normal star | SCR 1845–6357 A | 0.07 M☉ | [NB 3] | [52] | List of least massive stars |
Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Most massive brown dwarf | Lup 607 | 2021 | 105 MJupiter | This is at the limit between brown dwarfs and red dwarfs.[53][54] | [55] | ||
Most massive degenerate star | The most massive type of degenerate star is the neutron star. See Most massive neutron star for this recordholder.[NB 4] | ||||||
Most massive neutron star | PSR J0740+6620 | 2019 | 2.14 MSun | Several candidates exist which have a higher mass, however their mass has been measured by less precise methods and as such their mass value is regarded as less certain. | [56] | List of most massive neutron stars | |
Most massive neutron star (disputed) | PSR J1748-2021B | 2015 | 2.548 MSun | [57] | |||
Most massive white dwarf | RE J0317-853/ZTF J1901+1458 | 1998/2020 | 1.35 MSun | [58][59] |
Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Least massive normal star | SCR 1845–6357 A | 0.07 M☉ | [NB 3] | [52] | List of least massive stars | ||
Least massive white dwarf | SDSS J091709.55+463821.8 (WD J0917+4638) |
2007 | 0.17 MSun | [60][61][62][63] | |||
Least massive brown dwarf | (unnamed) | 2023 | 3 – 4 MJ | Located in the star cluster IC 348 | [64][65] | Sub-brown dwarf |
Motion
[edit]Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Highest proper motion | Barnard's Star | 10.3 "/yr | This is also the fourth closest star to the Solar System. | [66][67] | |||
Lowest proper motion | N/A | N/A | ~0 "/yr | Billions of stars on the other end of the galaxy | |||
Highest radial velocity | |||||||
Lowest radial velocity | EY Aquarii | 2013 | -870 km/s | Mira variable | [NB 11] | ||
Highest peculiar motion | |||||||
Lowest peculiar motion | |||||||
Highest rotational speed of a normal star | VFTS 102 | 2013 | 600 km/s | [NB 3] | [68] | ||
Lowest rotational speed | Przybylski's Star | 1961 | 0.0014 km/s | ||||
Fastest velocity of a star | S5-HVS1 | 2019 | 1,755 km/s | [69][70][71][72] |
Star systems
[edit]Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Least stars in a star system | There are many single star systems. | ||||||
Most stars in a star system | Nonuple star system[73] | System contains at least nine stars.[73] | [NB 12] | [73] | |||
Stars in the closest orbit around one another | There are many stars that are in contact binary systems (where two or more stars are in physical contact with each other). | ||||||
Stars in the most distant orbit around one another | Regulus/SDSS J1007+1930 | 2024 | ~3.9 parsecs (13 ly) | [74] | |||
Nearest multiple star system | Alpha Centauri | 1839 | 1.30 parsecs (4.2 ly) | This was one of the first three stars to have its distance measured.[75][76] | [9][77] | ||
Nearest binary star system | Luhman 16 | 2013 | 1.998 parsecs (6.52 ly) | Brown dwarf binary system. The nearest non-brown dwarf binary is Sirius, and the nearest composed entirely of main-sequence stars is Luyten 726-8. | |||
Nearest trinary star system | Alpha Centauri | 1839 | 1.38 parsecs (4.5 ly) | Also nearest multiple star system, and nearest star system of any type | |||
Nearest quaternary star system | Gliese 570 | 5.88 parsecs (19.2 ly) | K4 star orbited by a pair of M stars, all orbited by a T7 brown dwarf. | ||||
Nearest quintenary star system | V1054 Ophiuchi | 6.46 parsecs (21.1 ly) | M3 star orbited by a pair of pair of M4 stars, together orbited by an M3.5 star, all orbited by an M7 star. | ||||
Nearest sextenary star system | Castor | 1718 | 15.6 parsecs (51 ly) | A1 star orbited by a red dwarf, both orbited by another A star orbited by a red dwarf, all orbited by two red dwarfs orbiting each other. | |||
Nearest septenary star system | Nu Scorpii | 150 parsecs (490 ly) | A B3V star orbited by an unknown-type star, both orbited by another unknown star, together orbited by another unknown star, all orbited by a B9III star orbiting a pair of stars which are a B9III and unknown star. |
Title | Object | Date | Data | Comments | Notes | Refs | See more |
---|---|---|---|---|---|---|---|
Shortest period black hole binary system | MAXI J1659-152 | 2013 | 2.4 hours | This exceeds the preceding recordholder by about one hour (Swift J1753.5-0127 with a 3.2 hour period) | [78] |
See also
[edit]- Angular diameter
- Compact object
- Historical brightest stars
- List of brightest stars
- Lists of constellations
- IAU designated constellations by area
- List of exoplanet extremes
- List of extremes in the sky
- List of largest known stars
- List of most luminous stars
- List of nearest bright stars
- List of nearest galaxies
- List of nearest stars and brown dwarfs
- Lists of stars
- Lists of stars by constellation
- Peculiar velocity
- Proper motion
- Radial velocity
- Rotational frequency
- Star
- Star system
Notes
[edit]- ^ a b c d e f Other than the Sun
- ^ An "average" star is a normal star which is larger than a red dwarf, but smaller than a giant star. Depending on the definition, this can also be called "Sun-like star".
- ^ a b c d e f g h A normal star is a star that is past its protostar period, in its main fusion period, before becoming a degenerate star, black hole, or post-stellar nebula, and is not a failed star (brown dwarf).
- ^ a b Not including stellar-mass black holes or exotic stars
- ^ a b c d By visual magnitude (m)
- ^ a b c d e f g This is the appearance in the sky from Earth.
- ^ This does not include brightest stars due to outbursts
- ^ a b Luminosity here represents how bright a star is if all stars were equally far away, in visible light.
- ^ a b c Energetic here is the total electromagnetic energy emitted by a star in all wavelengths.
- ^ Not including stellar black holes
- ^ Stars with particularly high radial velocities are usually erroneously recorded, so all large values should be taken with a grain of salt.
- ^ The allowable distance between components of a star system is debated.
References
[edit]- ^ (in German) "Innes' Sterne bei α Centauri", Astronomische Nachrichten, volume 206, 1918 Bibcode:1918AN....206...97H
- ^ Harold L. Aden, "Alpha and Proxima Centauri", Astronomical Journal, vol. 39, issue 913, 1918 Bibcode:1928AJ.....39...20A
- ^ Welch, Brian; et al. (30 March 2022). "A highly magnified star at redshift 6.2". Nature. 603 (7903): 815–818. arXiv:2209.14866. Bibcode:2022Natur.603..815W. doi:10.1038/s41586-022-04449-y. PMID 35354998. S2CID 247842625. Retrieved 30 March 2022.
- ^ Gianopoulos, Andrea (30 March 2022). "Record Broken: Hubble Spots Farthest Star Ever Seen". NASA. Retrieved 30 March 2022.
- ^ Crane, Leah (7 April 2022). "Astronomers have found what may be the most distant galaxy ever seen – A galaxy called HD1 appears to be about 33.4 billion light years away, making it the most distant object ever seen – and its extreme brightness is puzzling researchers". New Scientist. Retrieved 8 April 2022.
- ^ "Team discovers two stars most distant ever observed in the Milky Way". phys.org. Retrieved 2016-01-14.
- ^ Schlaufman, Kevin C.; Thompson, Ian B.; Casey, Andrew R. (5 November 2018). "An ultra metal-poor star near the hydrogen-burning limit". The Astrophysical Journal. 867 (2): 98. arXiv:1811.00549. Bibcode:2018ApJ...867...98S. doi:10.3847/1538-4357/aadd97. S2CID 54511945.
- ^ "One of Milky Way's oldest stars discovered". SciNews.com. 6 November 2018. Retrieved 11 November 2018.
- ^ a b c Richard Powell (30 July 2006), "The Universe within 12.5 Light Years: The Nearest Stars", Atlas of the Universe (accessed 2010-11-01)
- ^ Fraser Cain (13 November 2009), "How Far is the Nearest Star?", Universe Today (accessed 2010-11-02)
- ^ Koen, C.; Kilkenny, D.; van Wyk, F.; Marang, F. (2010-04-01). "UBV(RI)C JHK observations of Hipparcos-selected nearby stars". Monthly Notices of the Royal Astronomical Society. 403 (4): 1949–1968. Bibcode:2010MNRAS.403.1949K. doi:10.1111/j.1365-2966.2009.16182.x. ISSN 0035-8711.
- ^ Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn (2016-04-13). "Living with a Red Dwarf: Rotation and X-ray and Ultraviolet Properties of the Halo Population Kapteyn's Star". The Astrophysical Journal. 821 (2): 81. arXiv:1602.01912. Bibcode:2016ApJ...821...81G. doi:10.3847/0004-637X/821/2/81. ISSN 1538-4357.
- ^ Demory, B.-O.; Segransan, D.; Forveille, T.; Queloz, D.; Beuzit, J.-L.; Delfosse, X.; Di Folco, E.; Kervella, P.; Bouquin, J.-B. Le; Perrier, C. (October 2009). "Mass-radius relation of low and very low-mass stars revisited with the VLTI". Astronomy & Astrophysics. 505 (1): 205–215. arXiv:0906.0602. Bibcode:2009A&A...505..205D. doi:10.1051/0004-6361/200911976. ISSN 0004-6361.
- ^ Lodieu, N.; Zapatero Osorio, M. R.; Martín, E. L.; Rebolo López, R.; Gauza, B. (2022-07-01). "Physical properties and trigonometric distance of the peculiar dwarf WISE J181005.5−101002.3". Astronomy and Astrophysics. 663: A84. arXiv:2206.13097. Bibcode:2022A&A...663A..84L. doi:10.1051/0004-6361/202243516. ISSN 0004-6361.
- ^ Vallenari, A.; et al. (2023). "Gaia Data Release 3". Astronomy & Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940.
- ^ a b Domiciano de Souza, A.; Zorec, J.; Millour, F.; Le Bouquin, J. -B.; Spang, A.; Vakili, F. (2021-10-01). "Refined fundamental parameters of Canopus from combined near-IR interferometry and spectral energy distribution". Astronomy and Astrophysics. 654: A19. arXiv:2109.07153. Bibcode:2021A&A...654A..19D. doi:10.1051/0004-6361/202140478. ISSN 0004-6361.
- ^ Gray, R. O.; Garrison, R. F. (1989-02-01). "The Early F-Type Stars: Refined Classification, Confrontation with Stroemgren Photometry, and the Effects of Rotation". The Astrophysical Journal Supplement Series. 69: 301. Bibcode:1989ApJS...69..301G. doi:10.1086/191315. ISSN 0067-0049.
- ^ Shenoy, Dinesh; Humphreys, Roberta M.; Jones, Terry J.; Marengo, Massimo; Gehrz, Robert D.; Helton, L. Andrew; Hoffmann, William F.; Skemer, Andrew J.; Hinz, Philip M. (February 2016). "Searching for Cool Dust in the Mid-to-Far Infrared: The Mass-Loss Histories of the Hypergiants μ Cep, VY CMa, IRC+10420, AND ρ Cas*". The Astronomical Journal. 151 (3): 51. arXiv:1512.01529. Bibcode:2016AJ....151...51S. doi:10.3847/0004-6256/151/3/51. ISSN 1538-3881.
- ^ van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy & Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. ISSN 0004-6361.
- ^ Rappaport, S.; Podsiadlowski, Ph; Horev, I. (2009-06-10). "The Past and Future History of Regulus". The Astrophysical Journal. 698 (1): 666–675. arXiv:0904.0395. Bibcode:2009ApJ...698..666R. doi:10.1088/0004-637X/698/1/666. ISSN 0004-637X.
- ^ van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy & Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. ISSN 0004-6361.
- ^ NASA Images, "Hubble Sees Bare Neutron Star Streaking Across Space" Archived 2012-11-02 at the Wayback Machine, NASA, 9 November 2000 (accessed 2010-11-01)
- ^ RedOrbit, "The Motion of RX J185635-3754 - The Nearest Neutron Star to Earth", 8 February 2005 (accessed 2010-11-01)
- ^ Astronomy 122: Astronomy of Stars and Galaxies, "Lecture 19: Neutron Stars"[permanent dead link ], Sharon Morsink, University of Alberta, term:Winter 2011, published:2010 (accessed 2010-11-01)
- ^ Christine McGourty (14 December 2005), "Hubble finds mass of white dwarf", BBC News (accessed 2010-11-01)
- ^ E. Schatzman, White Dwarfs, Amsterdam: North-Holland, 1958, p. 1
- ^ Barbara K. Kennedy (12 March 2013), "The Closest Star System Found in a Century", SpaceDaily
- ^ de Almeida, E S G; Hugbart, M; Domiciano de Souza, A; Rivet, J-P; Vakili, F; Siciak, A; Labeyrie, G; Garde, O; Matthews, N; Lai, O; Vernet, D; Kaiser, R; Guerin, W (2022-06-15). "Combined spectroscopy and intensity interferometry to determine the distances of the blue supergiants P Cygni and Rigel". Monthly Notices of the Royal Astronomical Society. 515 (1): 1–12. arXiv:2204.00372. doi:10.1093/mnras/stac1617. ISSN 0035-8711.
- ^ NOAO, "Astronomers Peg Brightness of History's Brightest Star", 5 March 2003 (accessed 2010-10-25)
- ^ Humphreys, Roberta M.; Davidson, Kris; Hahn, David; Martin, John C.; Weis, Kerstin (2017-07-20). "Luminous and Variable Stars in M31 and M33. V. The Upper HR Diagram". The Astrophysical Journal. 844 (1): 40. arXiv:1707.01916. Bibcode:2017ApJ...844...40H. doi:10.3847/1538-4357/aa7cef. ISSN 0004-637X.
- ^ a b Dieterich, Sergio B.; Henry, Todd J.; Jao, Wei-Chun; Winters, Jennifer G.; Hosey, Altonio D.; Riedel, Adric R.; Subasavage, John P. (2014). "The Solar Neighborhood XXXII. The Hydrogen Burning Limit". The Astronomical Journal. 147 (5): 94. arXiv:1312.1736. Bibcode:2014AJ....147...94D. doi:10.1088/0004-6256/147/5/94. S2CID 21036959.
- ^ Crowther, Paul A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x. S2CID 53001712.
- ^ Sander, Andreas A. C.; Hamann, Wolf-Rainer; Todt, Helge; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha; Oskinova, Lidia M. (January 2019). "The Galactic WC and WO stars: The impact of revised distances from Gaia DR2 and their role as massive black hole progenitors". Astronomy & Astrophysics. 621: A92. arXiv:1807.04293. Bibcode:2019A&A...621A..92S. doi:10.1051/0004-6361/201833712. ISSN 0004-6361. S2CID 67754788.
- ^ Ramstedt, S.; Olofsson, H. (2014). "The 12CO/13CO ratio in AGB stars of different chemical type. Connection to the 12C/13C ratio and the evolution along the AGB". Astronomy & Astrophysics. 566: A145. arXiv:1405.6404. Bibcode:2014A&A...566A.145R. doi:10.1051/0004-6361/201423721. S2CID 59125036.
- ^ González-Santamaría, I.; Manteiga, M.; Manchado, A.; Ulla, A.; Dafonte, C. (2019-10-01). "Properties of central stars of planetary nebulae with distances in Gaia DR2". Astronomy & Astrophysics. 630: A150. arXiv:1909.04601. Bibcode:2019A&A...630A.150G. doi:10.1051/0004-6361/201936162. ISSN 0004-6361. S2CID 202542741.
- ^ Yue, Y. L.; Cui, X. H.; Xu, R. X. (2006-10-01). "Is PSR B0943+10 a low-mass quark star?". The Astrophysical Journal. 649 (2): L95 – L98. arXiv:astro-ph/0603468. Bibcode:2006ApJ...649L..95Y. doi:10.1086/508421. ISSN 0004-637X. S2CID 18183996.
- ^ Indian News, "Astronomers discover Universes hottest white dwarf" Archived 2016-03-03 at the Wayback Machine, ANI, 13 December 2008 (accessed 2010-11-09)
- ^ 11th European Workshop on White Dwarfs, ASP Conference Series #169, "RX J2117+3412, the hottest known pulsating PG 1159 star", Vauclair, G.; Moskalik, P.; The Wet Team, 1999, ISBN 1-886733-91-0 , Bibcode:1999ASPC..169...96V , pg.96
- ^ "The Solution That Looks For A Problem: Mathematical Modeling And Its Applications For Teaching And Learning In Mathematics". Archived from the original on 2010-06-05. Retrieved 2010-10-25.
- ^ Internet Encyclopedia of Philosophy, "Thales of Miletus (c. 620 BC – c. 546 BC)", Patricia O'Grady, 17 September 2004 (accessed 2010-10-25)
- ^ ESO, "The Biggest Star in the Sky", 11 March 1997 (accessed 2010-10-25)
- ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. S2CID 15109583.
- ^ Levesque, E. M.; Massey, P.; Plez, B.; Olsen, K. A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID 18074349.
- ^ Munoz-Sanchez, G.; et al. (28 November 2024). "The dramatic transition of the extreme Red Supergiant WOH G64 to a Yellow Hypergiant". arXiv:2411.19329.
- ^ Wittkowski, M.; Hauschildt, P.H.; Arroyo-Torres, B.; Marcaide, J.M. (5 April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY CMa based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. S2CID 54044968.
- ^ Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart; Vaz, Amali (February 2019). "Thermal Emission in the Southwest Clump of VY CMa". The Astronomical Journal. 157 (2): 57. arXiv:1811.05998. Bibcode:2019AJ....157...57G. doi:10.3847/1538-3881/aaf5cb. S2CID 119044678.
- ^ Eric Mack (11 July 2017). "Saturn-sized star is the smallest ever discovered". cnet.
- ^ "Smallest-ever star discovered by astronomers". University of Cambridge. 2017.
- ^ Alexander von Boetticher; Amaury H.M.J. Triaud; Didier Queloz; Sam Gill; Monika Lendl; Laetitia Delrez; David R. Anderson; Andrew Collier Cameron; Francesca Faedi; Michaël Gillon; Yilen Gómez Maqueo Chew; Leslie Hebb; Coel Hellier; Emmanuël Jehin; Pierre F.L. Maxted; David V. Martin; Francesco Pepe; Don Pollacco; Damien Ségransan; Barry Smalley; Stéphane Udry; Richard West (12 June 2017). "The EBLM project; III. A Saturn-size low-mass star at the hydrogen-burning limit". Astronomy & Astrophysics. 604: L6. arXiv:1706.08781. Bibcode:2017A&A...604L...6V. doi:10.1051/0004-6361/201731107. S2CID 54610182. EBLM_III.
- ^ a b Kalari, Venu M.; Horch, Elliott P.; Salinas, Ricardo; Vink, Jorick S.; Andersen, Morten; Bestenlehner, Joachim M.; Rubio, Monica (2022-07-26). "Resolving the Core of R136 in the Optical". The Astrophysical Journal. 935 (2): 162. arXiv:2207.13078. Bibcode:2022ApJ...935..162K. doi:10.3847/1538-4357/ac8424. S2CID 251067072.
- ^ Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565: A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696. S2CID 55123954.
- ^ a b "THE 100 NEAREST STAR SYSTEMS". www.astro.gsu.edu. Retrieved 2019-02-04.
- ^ Rebolo, R. (1996). "Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test". The Astrophysical Journal. 469: L53 – L56. arXiv:astro-ph/9607002. Bibcode:1996ApJ...469L..53R. doi:10.1086/310263. S2CID 119485127.
- ^ Astronomical Society of the Pacific Conference Series, 'In Cool Stars, Stellar Systems, and the Sun: Ninth Cambridge Workshop', "An I. K Survey of the Pleiades", Jameson, R. F.; Hodgkin, S. T.; Pinfield, D. J., vol. 109, p. 363, eds. R. Pallavicini, A. K. Dupree, 1996, Bibcode:1996ASPC..109..363J
- ^ Rilinger, Anneliese M.; Espaillat, Catherine C. (2021-11-01). "Disk Masses and Dust Evolution of Protoplanetary Disks around Brown Dwarfs". The Astrophysical Journal. 921 (2): 182. arXiv:2106.05247. Bibcode:2021ApJ...921..182R. doi:10.3847/1538-4357/ac09e5. ISSN 0004-637X.
- ^ Antoniadis, J.; Freire, P. C. C.; Wex, N.; Tauris, T. M.; Lynch, R. S.; Van Kerkwijk, M. H.; Kramer, M.; Bassa, C.; Dhillon, V. S.; Driebe, T.; Hessels, J. W. T.; Kaspi, V. M.; Kondratiev, V. I.; Langer, N.; Marsh, T. R.; McLaughlin, M. A.; Pennucci, T. T.; Ransom, S. M.; Stairs, I. H.; Van Leeuwen, J.; Verbiest, J. P. W.; Whelan, D. G. (2013). "A Massive Pulsar in a Compact Relativistic Binary". Science. 340 (6131): 1233232. arXiv:1304.6875. Bibcode:2013Sci...340..448A. doi:10.1126/science.1233232. PMID 23620056. S2CID 15221098.
- ^ Jiang, Jin-Liang; Tang, Shao-Peng; Wang, Yuan-Zhu; Fan, Yi-Zhong; Wei, Da-Ming (2020-03-01). "PSR J0030+0451, GW170817, and the Nuclear Data: Joint Constraints on Equation of State and Bulk Properties of Neutron Stars". The Astrophysical Journal. 892 (1): 55. arXiv:1912.07467. Bibcode:2020ApJ...892...55J. doi:10.3847/1538-4357/ab77cf. ISSN 0004-637X. S2CID 209376461.
- ^ Bulletin of the American Astronomical Society, "The Record Breaking Magnetic White Dwarf RE J0317-853", Burleigh, M. R.; Jordan, S., Vol. 29, p.1234, January 1998, Bibcode:1998AAS...191.1511B
- ^ Wolfram Scienceworld, "White Dwarf", Eric W. Weisstein, 2007 (accessed 2010-30-10)
- ^ CfA, "Cosmic Weight Loss: The Lowest Mass White Dwarf", 17 April 2007 (accessed 2010-10-30)
- ^ JUMK.de, "Special Stars: SDSS J091709.55+463821.8" (accessed 2010-10-30)
- ^ Agüeros, Marcel A. (2009). "No Neutron Star Companion to the Lowest Mass SDSS White Dwarf". The Astrophysical Journal. 700 (2): L123 – L126. arXiv:0906.5109. Bibcode:2009ApJ...700L.123A. doi:10.1088/0004-637X/700/2/L123. , Bibcode:2009ApJ...700L.123A , arXiv:0906.5109
- ^ Internet Encyclopedia of Science, "White Dwarf", David Darling (accessed 10-30-2010)
- ^ "NASA's Webb Identifies Tiniest Free-Floating Brown Dwarf". NASA. 2023-12-13. Retrieved 2024-01-16.
- ^ "Webb identifies tiniest free-floating brown dwarf". www.esa.int. Retrieved 2024-01-16.
- ^ Hayden Planetarium, "Stellar Orbits" Archived 2011-03-22 at the Wayback Machine, Sébastien Lépine, Brian Abbott (accessed 2010-11-20)
- ^ Ohio State University, Astronomy 143: The History of the Universe (Fall 2009); "Stars and Galaxies in Motion" Archived 2011-07-20 at the Wayback Machine, Barbara Sue Ryden, 15 October 2009 (accessed 2010-11-20)
- ^ Jiang, Dengkai; Han, Zhanwen; Yang, Liheng; Li, Lifang (2013). "The binary merger channel for the progenitor of the fastest rotating O-type star VFTS 102". Monthly Notices of the Royal Astronomical Society. 428 (2): 1218. arXiv:1302.6296. Bibcode:2013MNRAS.428.1218J. doi:10.1093/mnras/sts105.
- ^ Overbye, Dennis (14 November 2019). "A Black Hole Threw a Star Out of the Milky Way Galaxy - So long, S5-HVS1, we hardly knew you". The New York Times. Retrieved 18 November 2019.
- ^ Koposov, Sergey E.; et al. (11 November 2019). "Discovery of a nearby 1700 km/s star ejected from the Milky Way by Sgr A*". Monthly Notices of the Royal Astronomical Society. arXiv:1907.11725. doi:10.1093/mnras/stz3081.
- ^ Starr, Michelle (31 July 2019). "Bizarre Star Found Hurtling Out of Our Galaxy Centre Is Fastest of Its Kind Ever Seen". ScienceAlert.com. Retrieved 17 November 2019.
- ^ Irving, Michael (13 November 2019). "Fastest star ever found is being flicked out of the Milky Way". NewAtlas.com. Retrieved 17 November 2019.
- ^ a b c Mayer, P.; Harmanec, P.; Zasche, P.; Brož, M.; Catalan-Hurtado, R.; Barlow, B. N.; Frondorf, W.; Wolf, M.; Drechsel, H.; Chini, R.; Nasseri, A.; Pigulski, A.; Labadie-Bartz, J.; Christie, G. W.; Walker, W. S. G.; Blackford, M.; Blane, D.; Henden, A. A.; Bohlsen, T.; Božić, H.; Jonák, J. (2022). "Towards a consistent model of the hot quadruple system HD 93206 = QZ Carinæ — I. Observations and their initial analyses". Astronomy & Astrophysics. 666: A23. arXiv:2204.07045. Bibcode:2022A&A...666A..23M. doi:10.1051/0004-6361/202142108. S2CID 248177961.
- ^ Mamajek, Eric E.; Burgasser, Adam J. (2024-12-05). "SDSS J100711.74+193056.2: A Candidate Common Motion Substellar Companion to the Nearest B-Type Star Regulus". arXiv:2412.04599 [astro-ph].
- ^ "Report of the Council of the Society to the Nineteenth Annual General Meeting", Monthly Notices of the Royal Astronomical Society, Vol. 4 No. 20, 8 February 1839, Royal Astronomical Society, Bibcode:1836MNRAS...4....3M
- ^ Kentucky New Era, "A Problem That The Star Sharps Are Trying To Solve", New York World, 3 July 1895 (accessed 22 March 2010)
- ^ Universe Today, "Distance to Nearest Star", Fraser Cain, 30 December 2009 (accessed 2010-11-02)
- ^ SpaceDaily, "Black hole-star pair orbiting at dizzying speed", 22 March 2013