Jump to content

Ling adder

From Wikipedia, the free encyclopedia

In electronics, a Ling adder is a particularly fast binary adder designed using H. Ling's equations and generally implemented in BiCMOS. Samuel Naffziger of Hewlett-Packard presented an innovative 64 bit adder in 0.5 μm CMOS based on Ling's equations at ISSCC 1996. The Naffziger adder's delay was less than 1 nanosecond, or 7 FO4.[1]

Equations

[edit]

Ling adder, architecture Skllansky, radix-2, 4-bit

[edit]

In Borland Turbo Basic 1.1:

'--- Step 0 ------------ Warning ---------------------------------------
P00 = A0 OR  B0    '1dt, Initial only CLA & Ling Propagate (not in PPA)
G00 = A0 AND B0    '1dt, Initial CLA & Ling & PPA Generate
D00 = A0 XOR B0    '1dt, Only Ling Initial half bit generate (P0 in PPA)

P10 = A1 OR  B1    '1dt
G10 = A1 AND B1    '1dt
D10 = A1 XOR B1    '1dt

P20 = A2 OR  B2    '1dt
G20 = A2 AND B2    '1dt
D20 = A2 XOR B2    '1dt

P30 = A3 OR  B3    '1dt
G30 = A3 AND B3    '1dt
D30 = A3 XOR B3    '1dt

'--- Step 1, Ling Propagate and Generate ------
LG01 = G00          '1dt
LG11 = G10 OR  G00  '2dt

LP11 = P10          '1dt, Sklansky architecture
LG21 = G20          '1dt, Sklansky architecture

LP21 = P20 AND P10  '2dt
LG31 = G30 OR  G20  '2dt

'--- Step 2, Ling PseudoCarry (H) ---------------------------
H0 = LG01                     '1dt
H1 = LG11                     '2dt
H2 = LG21 OR (LP11 AND LG11)  '4dt TTL, Sklansky architecture
'    1dt      1dt      2dt
H3 = LG31 OR (LP21 AND LG11)  '4dt TTL
'    2dt      2dt      2dt
'--- Sum -----------------------------------------
S0 = (D00         )                           '1dt
S1 = (D10 AND 1-H0) OR ((D10 XOR P00) AND H0) '4dt TTL
S2 = (D20 AND 1-H1) OR ((D20 XOR P10) AND H1) '5dt TTL
S3 = (D30 AND 1-H2) OR ((D30 XOR P20) AND H2) '7dt TTL
S4 =                   ((        P30) AND H3) '5dt TTL, S4=C4=Cout 
[2]

Ling adder, architecture Kogge-Stone, radix-2, 4-bit

[edit]
'--- Step 0 ------------ Warning ---------------------------------------
P00 = A0 OR  B0    '1dt, Initial only CLA & Ling Propagate (not in PPA)
G00 = A0 AND B0    '1dt, Initial CLA & Ling & PPA Generate
D00 = A0 XOR B0    '1dt, Only Ling Initial half bit generate (P0 in PPA)

P10 = A1 OR  B1    '1dt
G10 = A1 AND B1    '1dt
D10 = A1 XOR B1    '1dt

P20 = A2 OR  B2    '1dt
G20 = A2 AND B2    '1dt
D20 = A2 XOR B2    '1dt

P30 = A3 OR  B3    '1dt
G30 = A3 AND B3    '1dt
D30 = A3 XOR B3    '1dt

'--- Step 1 ----------------------------
LG01 = G00          '1dt, Ling Generate

LP11 = P10 AND P00  '2dt, Ling Propagate, Kogge-Stone architecture
LG11 = G10 OR  G00  '2dt

LP21 = P20 AND P10  '2dt
LG21 = G20 OR  G10  '2dt, Kogge-Stone architecture

LG31 = G30 OR  G20  '2dt

'--- Step 2, Ling PsevdoCarry ----
H0 = LG01                     '1dt
H1 = LG11                     '2dt
H2 = LG21 OR (LP11 AND LG01)  '4dt TTL, Kogge-Stone architecture
'    2dt      2dt      1dt
H3 = LG31 OR (LP21 AND LG11)  '4dt TTL
'    2dt      2dt      2dt
'--- Sum -----------------------------------------
S0 = (D00         )                           '1dt
S1 = (D10 AND 1-H0) OR ((D10 XOR P00) AND H0) '4dt TTL
S2 = (D20 AND 1-H1) OR ((D20 XOR P10) AND H1) '5dt TTL
S3 = (D30 AND 1-H2) OR ((D30 XOR P20) AND H2) '7dt TTL
S4 =                  ((         P30) AND H3) '5dt TTL, S4=C4=Cout
[3]

References

[edit]
  1. ^ Naffziger, S. (8–10 February 1996). "A Sub-Nanosecond 0.5um 64b Adder Design" (PDF). Digest of Technical Papers, 1996 IEEE International Solid-State Circuits Conference. San Francisco. pp. 362–363. Archived from the original (PDF) on 10 April 2006.
  2. ^ http://andserkul.narod.ru/R2LSK4.bas [bare URL]
  3. ^ http://andserkul.narod.ru/R2LKS4.bas [bare URL]
[edit]
  1. H. Ling, "High Speed Binary Parallel Adder", IEEE Transactions on Electronic Computers, EC-15, p. 799-809, October, 1966.
  2. H. Ling, "High-Speed Binary Adder", IBM J. Res. Dev., vol.25, p. 156-66, 1981.
  3. R. W. Doran, "Variants on an Improved Carry Look-Ahead Adder", IEEE Transactions on Computers, Vol.37, No.9, September 1988.
  4. N. T. Quach, M. J. Flynn, "High-Speed Addition in CMOS", IEEE Transactions on Computers, Vol.41, No.12, December, 1992.
  5. S. Naffziger, "High Speed Addition Using Ling's Equations and Dynamic CMOS Logic", U.S. Patent No. 5,719,803, Issued: February 17, 1998.
  6. G. Dimitrakopoulos, D. Nikolos, "High-Speed Parallel-Prefix VLSI Ling Adders", IEEE Transaction on Computers, Vol.54, No.2, February, 2005.


Devtools
Interact with your site

This panel displays the activity of Edgio edge and browser caches and prefetching.

78741754-32CA-4E37-B0F8-7A60AB8D4089