Jump to content

Joyce Wong

From Wikipedia, the free encyclopedia
Joyce Y. Wong
Alma materMassachusetts Institute of Technology
Scientific career
InstitutionsUniversity of California, Santa Barbara
Boston University
Websitepeople.bu.edu/wonglab/

Joyce Y. Wong is an American engineer who is Professor of Biomedical Engineering and Materials Science and Engineering at Boston University. Her research develops novel biomaterials for the early detection treatment of disease. Wong is the Inaugural Director of the Provost's Initiative to promote gender equality and inclusion in STEM at all levels: Advance, Recruit, Retain and Organize Women in STEM. She is a Fellow of the American Association for the Advancement of Science, American Institute for Medical and Biological Engineering and Biomedical Engineering Society.

Education and early career

[edit]

Wong studied materials science and engineering at the Massachusetts Institute of Technology. Wong is an accomplished cellist – in 1984 she was a finalist in the Seventeen Magazine & General Motors National Concerto Competition, and during her undergraduate and graduate career was a member of the MIT Chamber Music Society. As an undergraduate at MIT she was a General Motors Women's Club scholar, a Uniroyal National Merit Scholar and Tau Beta Pi society member. She graduated in 1988, before beginning a PhD (Materials Science & Engineering) in the Program for Polymer Science and Technology as an IBM graduate research fellow, working with Robert S. Langer.[1] She earned her PhD from Massachusetts Institute of Technology in 1994.[1]

Wong was appointed a National Institutes of Health postdoctoral fellow at University of California, Santa Barbara working under Jacob N. Israelachvili. Her doctoral research investigated electrically conducting polymers, identifying that they can be used as a culture substrate to modulate the shape and growth of mammalian cells.[2] In her postdoctoral training, to mimic biological ligand - receptor interactions, Wong studied the interactions between polymer-tethered ligands and receptors using surface forces apparatus.[3] She also developed polymer cushioned bilayers as model cell membrane systems and characterized their biophysical properties using the surface forces apparatus and neutron reflectometry.[4][5]

Career

[edit]

Wong joined Boston University as a Clare Boothe Luce Assistant Professor in 1998, Faculty of the College of Engineering in the Department of Biomedical Engineering and later in the Division of Materials Science and Engineering. She is a faculty mentor in training programs in the College of Arts and Sciences and the BU School of Medicine.[1] She develops biomaterials that can interact with living cells, interrogating biocompatibility and cell behaviour.[6][7] She was promoted to Professor in 2013.

Wong's research focuses on developing biomaterials for the early detection and treatment of disease.[8] She is interested in understanding how the physical cellular environment determines cell behavior by developing substrata with features that can imitate pathophysiological and physiological environments.[7] This approach includes studying cell behaviours such as directed cell migration, which she first began in cardiovascular cells[9][10][11][12]   and later expanded to include metastatic cancer cells.[13][14][15] Her recent research in this area has been focused on combining the understanding of factors that control cardiovascular cell behavior[16][17][18][19] with micropatterned cell sheet technology[20][21][22][23] to develop surgical solutions for paediatric patients with congenital heart defects.[24][25]  

Wong has also developed microfluidic processing methods to create fibers of the biopolymer silk[26][27] and has recently been focusing on developing protein alloy fibers.[28] Using tools developed to describe the silk's structure and drawing on her musical training, Wong enlisted composer John MacDonald (Tufts University), who translated the structure of different silk protein fragment sequences into a series of musical compositions for flute.[29]

Wong's most recent work has been developing targeted ultrasound[30][31][32] and magnetic resonance (MR)[33][34] contrast agents for the early detection of disease. Her MR contrast agent studies grew out of her work using nanotechnology to develop contrast agents to enhance oil recovery.[35][36][37] She is currently conducting pre-clinical studies of targeted ultrasound contrast agents in collaboration with Nanovalent Pharmaceuticals[38] to detect and treat surgical adhesions.[39]

Academic service

[edit]

Wong served on the Executive Board of the Biomedical Engineering Society from 2011 to 2014. In 2011, she served as the first woman Chair of the Gordon Research Conference on Biomaterials & Tissue Engineering – a conference that began in 1966 as the Science and Technology of Biomaterials.[40] An informal brainstorming session of women at this meeting led to a social media group formed by Laura Suggs (UT Austin) with the aim of creating a network to connect women faculty in Biomedical Engineering. Wong is the lead editor of Biomaterials: Principles and Practices.[1] From 2016-2018 she served as co-chair of AIMBE Women; in 2016 conference co-chair of the 90th American Chemical Society's Colloid and Surface Science Symposium; and in 2017 as a Volume Organizer of the Materials Research Society's (MRS) MRS Bulletin. She is on the editorial board of several journals and is Associate Editor (the Americas) for the journal Drug Delivery and Translational Research. In 2018 she was elected to the Council of the Tissue Engineering Regenerative Medicine International Society (TERMIS) - North America.[citation needed]

At Boston University, Wong is the Inaugural Director of the Provost's Initiative to promote gender equality and inclusion in STEM at all levels: Advance, Recruit, Retain and Organize Women in STEM (ARROWS).[41][42] The program advocates for women in STEM at all career stages, from early school education to K–12 and academia.[41] It works on both the Charles River and Boston University School of Medicine campuses.[41]

In 2016, Wong – together with Julie Chen and Paula Rayman of U Mass Lowell – approached the AAAS with an idea for the STEM Equity Achievement (SEA) Change Awards for diversity, equity and inclusion in higher-ed institutions, which, as of 2018, is in the bronze pilot stage.[43] The idea was inspired by the Athena SWAN program in the UK and the National Science Foundation ADVANCE program.

Awards and honours

[edit]

References

[edit]
  1. ^ a b c d e f g h Wong, Joyce Y.; Bronzino, Joseph D.; Peterson, Donald R. (2012-12-06). Biomaterials: Principles and Practices. CRC Press. ISBN 9781439872512.
  2. ^ Wong, J. Y.; Langer, R.; Ingber, D. E. (1994-04-12). "Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells". Proceedings of the National Academy of Sciences. 91 (8): 3201–3204. Bibcode:1994PNAS...91.3201W. doi:10.1073/pnas.91.8.3201. ISSN 0027-8424. PMC 43543. PMID 8159724.
  3. ^ Zalipsky, Samuel; Mullah, Nasreen; Israelachvili, Jacob N.; Kuhl, Tonya L.; Wong, Joyce Y. (1997-02-07). "Direct Measurement of a Tethered Ligand-Receptor Interaction Potential". Science. 275 (5301): 820–822. doi:10.1126/science.275.5301.820. ISSN 1095-9203. PMID 9012346. S2CID 18381973.
  4. ^ Wong, J Y; Park, C K; Seitz, M; Israelachvili, J (1999). "Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus". Biophysical Journal. 77 (3): 1458–1468. Bibcode:1999BpJ....77.1458W. doi:10.1016/S0006-3495(99)76993-6. ISSN 0006-3495. PMC 1300433. PMID 10465756.
  5. ^ Smith, G. S.; Israelachvili, J. N.; Park, C. K.; Seitz, M.; Majewski, J.; Wong, J. Y. (1999-09-01). "Polymer-Cushioned Bilayers. I. A Structural Study of Various Preparation Methods Using Neutron Reflectometry". Biophysical Journal. 77 (3): 1445–1457. Bibcode:1999BpJ....77.1445W. doi:10.1016/S0006-3495(99)76992-4. ISSN 0006-3495. PMC 1300432. PMID 10465755.
  6. ^ "Joyce Y. Wong, Ph.D. » Pharmacology and Experimental Therapeutics | Boston University". www.bumc.bu.edu. Retrieved 2019-01-04.
  7. ^ a b Wong, Joyce Y.; Leach, Jennie B.; Brown, Xin Q. (2004-10-10). "Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response". Surface Science. 570 (1–2): 119–133. Bibcode:2004SurSc.570..119W. doi:10.1016/j.susc.2004.06.186. ISSN 0039-6028.
  8. ^ "Joyce Wong Lab @ BU". people.bu.edu. Retrieved 2019-01-07.
  9. ^ Wong, Joyce Y.; Velasco, Alan; Rajagopalan, Padmavathy; Pham, Quynh (2003-03-01). "Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels". Langmuir. 19 (5): 1908–1913. doi:10.1021/la026403p. ISSN 0743-7463.
  10. ^ Zaari, N.; Rajagopalan, P.; Kim, S. K.; Engler, A. J.; Wong, J. Y. (2004). "Photopolymerization in Microfluidic Gradient Generators: Microscale Control of Substrate Compliance to Manipulate Cell Response". Advanced Materials. 16 (23–24): 2133–2137. Bibcode:2004AdM....16.2133Z. doi:10.1002/adma.200400883. ISSN 1521-4095. S2CID 135688441.
  11. ^ Isenberg, Brett C.; Dimilla, Paul A.; Walker, Matthew; Kim, Sooyoung; Wong, Joyce Y. (2009-09-02). "Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength". Biophysical Journal. 97 (5): 1313–1322. Bibcode:2009BpJ....97.1313I. doi:10.1016/j.bpj.2009.06.021. ISSN 0006-3495. PMC 2749749. PMID 19720019.
  12. ^ Hartman, Christopher D.; Isenberg, Brett C.; Chua, Samantha G.; Wong, Joyce Y. (2016-10-04). "Vascular smooth muscle cell durotaxis depends on extracellular matrix composition". Proceedings of the National Academy of Sciences of the United States of America. 113 (40): 11190–11195. Bibcode:2016PNAS..11311190H. doi:10.1073/pnas.1611324113. ISSN 0027-8424. PMC 5056055. PMID 27647912.
  13. ^ Zhang, Chentian; Shenk, Elizabeth M; Blaha, Laura C; Ryu, Byungwoo; Alani, Rhoda M; Cabodi, Mario; Wong, Joyce Y (2015-12-30). "A simple engineered platform reveals different modes of tumor-microenvironmental cell interaction". Biofabrication. 8 (1): 015001. Bibcode:2016BioFa...8a5001Z. doi:10.1088/1758-5090/8/1/015001. ISSN 1758-5090. PMC 4854650. PMID 26716792.
  14. ^ Zhang, Chentian; Barrios, Maria P.; Alani, Rhoda M.; Cabodi, Mario; Wong, Joyce Y. (2016-03-15). "A microfluidic Transwell to study chemotaxis". Experimental Cell Research. 342 (2): 159–165. doi:10.1016/j.yexcr.2016.03.010. ISSN 0014-4827. PMID 26988422.
  15. ^ Blaha, Laura; Zhang, Chentian; Cabodi, Mario; Wong, Joyce Y (2017-09-01). "A microfluidic platform for modeling metastatic cancer cell matrix invasion". Biofabrication. 9 (4): 045001. Bibcode:2017BioFa...9d5001B. doi:10.1088/1758-5090/aa869d. ISSN 1758-5090. PMC 5749210. PMID 28812983.
  16. ^ Backman, Daniel E.; LeSavage, Bauer L.; Wong, Joyce Y. (2017-01-25). "Versatile and inexpensive Hall-Effect force sensor for mechanical characterization of soft biological materials". Journal of Biomechanics. 51: 118–122. doi:10.1016/j.jbiomech.2016.11.065. ISSN 0021-9290. PMC 5191961. PMID 27923480.
  17. ^ Brown, Xin Q.; Bartolak-Suki, Erzsebet; Williams, Corin; Walker, Mathew L.; Weaver, Valerie M.; Wong, Joyce Y. (October 2010). "Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: implications for atherosclerosis". Journal of Cellular Physiology. 225 (1): 115–122. doi:10.1002/jcp.22202. ISSN 0021-9541. PMC 2920297. PMID 20648629.
  18. ^ Williams, C.; Liao, J.; Joyce, E.M.; Wang, B.; Leach, J.B.; Sacks, M.S.; Wong, J.Y. (May 2009). "Altered structural and mechanical properties in decellularized rabbit carotid arteries". Acta Biomaterialia. 5 (4): 993–1005. doi:10.1016/j.actbio.2008.11.028. ISSN 1742-7061. PMC 2680318. PMID 19135421.
  19. ^ Sazonova, Olga V. (2011). Cell-cell interactions and extracellular matrix presentation mediate the effects of substrate stiffness on vascular smooth muscle cell behavior. OCLC 796017358.
  20. ^ Isenberg, Brett C.; Tsuda, Yukiko; Williams, Corin; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo; Wong, Joyce Y. (June 2008). "A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization". Biomaterials. 29 (17): 2565–2572. doi:10.1016/j.biomaterials.2008.02.023. ISSN 0142-9612. PMC 2673468. PMID 18377979.
  21. ^ Williams, Corin; Tsuda, Yukiko; Isenberg, Brett C.; Yamato, Masayuki; Shimizu, Tatsuya; Okano, Teruo; Wong, Joyce Y. (2009-06-05). "Aligned Cell Sheets Grown on Thermo-Responsive Substrates with Microcontact Printed Protein Patterns". Advanced Materials. 21 (21): 2161–2164. Bibcode:2009AdM....21.2161W. doi:10.1002/adma.200801027. ISSN 0935-9648. S2CID 16726844.
  22. ^ Williams, Corin; Xie, Angela W.; Yamato, Masayuki; Okano, Teruo; Wong, Joyce Y (August 2011). "Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure". Biomaterials. 32 (24): 5625–5632. doi:10.1016/j.biomaterials.2011.04.050. ISSN 0142-9612. PMID 21601276.
  23. ^ Isenberg, Brett C.; Backman, Daniel E.; Kinahan, Michelle E.; Jesudason, Rajiv; Suki, Bela; Stone, Phillip J.; Davis, Elaine C.; Wong, Joyce Y. (March 2012). "Micropatterned cell sheets with defined cell and extracellular matrix orientation exhibit anisotropic mechanical properties". Journal of Biomechanics. 45 (5): 756–761. doi:10.1016/j.jbiomech.2011.11.015. ISSN 0021-9290. PMID 22177672.
  24. ^ Rim, Nae Gyune; Yih, Alice; Hsi, Peter; Wang, Yunjie; Zhang, Yanhang; Wong, Joyce Y. (October 2018). "Micropatterned cell sheets as structural building blocks for biomimetic vascular patches". Biomaterials. 181: 126–139. doi:10.1016/j.biomaterials.2018.07.047. ISSN 0142-9612. PMC 6661166. PMID 30081303.
  25. ^ Roberts, Erin G.; Lee, Elaine L.; Backman, Daniel; Buczek-Thomas, Jo Ann; Emani, Sitaram; Wong, Joyce Y. (2014-12-17). "Engineering Myocardial Tissue Patches with Hierarchical Structure–Function". Annals of Biomedical Engineering. 43 (3): 762–773. doi:10.1007/s10439-014-1210-6. ISSN 0090-6964. PMC 4380759. PMID 25515314.
  26. ^ Kinahan, M. E.; Filippidi, E.; Köster, S.; Hu, X.; Evans, H. M.; Pfohl, T.; Kaplan, D. L.; Wong, J. (2011). "Tunable Silk: Using Microfluidics to Fabricate Silk Fibers with Controllable Properties". Biomacromolecules. 12 (5): 1504–11. doi:10.1021/bm1014624. PMC 3305786. PMID 21438624.
  27. ^ Li, David; Jacobsen, Matthew M; Gyune Rim, Nae; Backman, Daniel; Kaplan, David L; Wong, Joyce Y (2017-05-31). "Introducing biomimetic shear and ion gradients to microfluidic spinning improves silk fiber strength". Biofabrication. 9 (2): 025025. Bibcode:2017BioFa...9b5025L. doi:10.1088/1758-5090/aa711b. ISSN 1758-5090. PMC 5588659. PMID 28471354.
  28. ^ Wong, Joyce Y.; Smith, Michael L.; Backman, Daniel; Rim, Nae Gyune; Li, David; Jacobsen, Matthew M. (2017-04-05). "Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue". Scientific Reports. 7: 45653. Bibcode:2017NatSR...745653J. doi:10.1038/srep45653. ISSN 2045-2322. PMC 5381220. PMID 28378749.
  29. ^ Wong, Joyce Y.; McDonald, John; Taylor-Pinney, Micki; Spivak, David I.; Kaplan, David L.; Buehler, Markus J. (2012-12-01). "Materials by design: Merging proteins and music". Nano Today. 7 (6): 488–495. doi:10.1016/j.nantod.2012.09.001. ISSN 1748-0132. PMC 3752788. PMID 23997808.
  30. ^ Duncanson, Wynter J.; Oum, Kelleny; Eisenbrey, John R.; Cleveland, Robin O.; Wheatley, Margaret A.; Wong, Joyce Y. (2010). "Targeted binding of PEG-lipid modified polymer ultrasound contrast agents with tiered surface architecture". Biotechnology and Bioengineering. 106 (3): 501–506. doi:10.1002/bit.22678. ISSN 1097-0290. PMC 2980833. PMID 20091738.
  31. ^ Park, Yoonjee; Luce, Adam C.; Whitaker, Ragnhild D.; Amin, Bhumica; Cabodi, Mario; Nap, Rikkert J.; Szleifer, Igal; Cleveland, Robin O.; Nagy, Jon O. (2012-02-28). "Tunable Diacetylene Polymerized Shell Microbubbles as Ultrasound Contrast Agents". Langmuir. 28 (8): 3766–3772. doi:10.1021/la204510h. ISSN 0743-7463. PMC 3302155. PMID 22260537.
  32. ^ Park, Yoonjee C.; Zhang, Chentian; Kim, Sudong; Mohamedi, Graciela; Beigie, Carl; Nagy, Jon O.; Holt, R. Glynn; Cleveland, Robin O.; Jeon, Noo Li (2016-11-23). "Microvessels-on-a-Chip to Assess Targeted Ultrasound-Assisted Drug Delivery". ACS Applied Materials & Interfaces. 8 (46): 31541–31549. doi:10.1021/acsami.6b09071. ISSN 1944-8244. PMID 27781429.
  33. ^ Park, Yoonjee C.; Smith, Jared B.; Pham, Tuan; Whitaker, Ragnhild D.; Sucato, Christopher A.; Hamilton, James A.; Bartolak-Suki, Elizabeth; Wong, Joyce Y. (July 2014). "Effect of PEG molecular weight on stability, T2 contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs)". Colloids and Surfaces B: Biointerfaces. 119: 106–114. doi:10.1016/j.colsurfb.2014.04.027. ISSN 0927-7765. PMC 4108172. PMID 24877593.
  34. ^ Meisel, Cari L.; Bainbridge, Polly; Mitsouras, Dimitrios; Wong, Joyce Y. (2018-08-21). "Targeted Nanoparticle Binding to Hydroxyapatite in a High Serum Environment for Early Detection of Heart Disease". ACS Applied Nano Materials. 1 (9): 4927–4939. doi:10.1021/acsanm.8b01099. ISSN 2574-0970. PMC 6924636. PMID 31867573.
  35. ^ Park, Yoonjee; Whitaker, Ragnhild D.; Nap, Rikkert J.; Paulsen, Jeffrey L.; Mathiyazhagan, Vidhya; Doerrer, Linda H.; Song, Yi-Qiao; Hürlimann, Martin D.; Szleifer, Igal (2012-04-03). "Stability of Superparamagnetic Iron Oxide Nanoparticles at Different pH Values: Experimental and Theoretical Analysis". Langmuir. 28 (15): 6246–6255. doi:10.1021/la204628c. ISSN 0743-7463. PMID 22409538.
  36. ^ Park, Yoonjee C.; Paulsen, Jeffrey; Nap, Rikkert J.; Whitaker, Ragnhild D.; Mathiyazhagan, Vidhya; Song, Yi-Qiao; Hürlimann, Martin; Szleifer, Igal; Wong, Joyce Y. (2014-01-14). "Adsorption of Superparamagnetic Iron Oxide Nanoparticles on Silica and Calcium Carbonate Sand". Langmuir. 30 (3): 784–792. doi:10.1021/la404387t. ISSN 0743-7463. PMID 24393031.
  37. ^ Nap, Rikkert J.; Park, Yoonjee; Wong, Joyce Y.; Szleifer, I. (2013-11-11). "Adsorption of Acid and Polymer Coated Nanoparticles: A Statistical Thermodynamics Approach". Langmuir. 29 (47): 14482–14493. doi:10.1021/la403143a. ISSN 0743-7463. PMID 24143965.
  38. ^ Barthel, W.; Markwardt, F. (1975-10-15). "Aggregation of blood platelets by adrenaline and its uptake". Biochemical Pharmacology. 24 (20): 1903–1904. doi:10.1016/0006-2952(75)90415-3. ISSN 0006-2952. PMID 20.
  39. ^ Isaac, O.; Thiemer, K. (September 1975). "[Biochemical studies on camomile components/III. In vitro studies about the antipeptic activity of (--)-alpha-bisabolol (author's transl)]". Arzneimittel-Forschung. 25 (9): 1352–1354. ISSN 0004-4172. PMID 21.
  40. ^ "Biomaterials and Tissue Engineering - Gordon Research Conferences".
  41. ^ a b c "People | ARROWS: Advance, Recruit, Retain & Organize Women in STEM". www.bu.edu. Retrieved 2019-01-04.
  42. ^ "Appointment of Professor Joyce Y. Wong as Director of a new effort to advance women in science, technology, engineering and mathematics at Boston University » Office of the Provost | Blog Archive | Boston University". www.bu.edu. Retrieved 2019-01-04.
  43. ^ "About". SEA Change. Retrieved 2019-01-07.
  44. ^ "BU College of Engineering Faculty - Awards | College of Engineering". www.bu.edu. Retrieved 2019-01-07.
  45. ^ "Joyce Wong Wins Hartwell Individual Biomedical Research Award | College of Engineering". www.bu.edu. Retrieved 2019-01-04.
  46. ^ "2011 Biomaterials and Tissue Engineering Conference GRC". www.grc.org. Retrieved 2019-01-04.
  47. ^ "Joyce Wong, Ph.D. COF-1095 - AIMBE". Retrieved 2019-01-04.
  48. ^ "2011 Biomaterials and Tissue Engineering Conference GRC". www.grc.org. Retrieved 2019-01-07.
  49. ^ a b "Joyce Y. Wong, Ph.D. | College of Engineering". www.bu.edu. Retrieved 2019-01-04.
  50. ^ "Enrico Bellotti, Siddharth Ramachandran and Joyce Wong Among 17 Faculty Awarded Full Professorships | College of Engineering". www.bu.edu. Retrieved 2019-01-04.
  51. ^ "2012 Kern Fellows Program" (PDF). blogs.bu.edu. Retrieved 2019-01-04.
  52. ^ "Joyce Wong Wong Elected as Biomedical Engineering Society Fellow - AIMBE". Retrieved 2019-01-04.
  53. ^ "Wong Elected as Biomedical Engineering Society Fellow | College of Engineering". www.bu.edu. Retrieved 2019-01-04.
  54. ^ Boston University (5 May 2017), College of Engineering 2017 Charles DeLisi Distinguished Lecture by Professor Joyce Y. Wong, retrieved 2019-01-04
  55. ^ Sheeley, Liz; Rimer, Sara. "AAAS Names Two BU Faculty as 2017 Fellows". www.bu.edu. Retrieved 2019-01-04.