Classes of partial recursive functions
In computability theory , index sets describe classes of computable functions ; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.
Let
φ
e
{\displaystyle \varphi _{e}}
be a computable enumeration of all partial computable functions, and
W
e
{\displaystyle W_{e}}
be a computable enumeration of all c.e. sets .
Let
A
{\displaystyle {\mathcal {A}}}
be a class of partial computable functions. If
A
=
{
x
:
φ
x
∈
A
}
{\displaystyle A=\{x\,:\,\varphi _{x}\in {\mathcal {A}}\}}
then
A
{\displaystyle A}
is the index set of
A
{\displaystyle {\mathcal {A}}}
. In general
A
{\displaystyle A}
is an index set if for every
x
,
y
∈
N
{\displaystyle x,y\in \mathbb {N} }
with
φ
x
≃
φ
y
{\displaystyle \varphi _{x}\simeq \varphi _{y}}
(i.e. they index the same function), we have
x
∈
A
↔
y
∈
A
{\displaystyle x\in A\leftrightarrow y\in A}
. Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.
Index sets and Rice's theorem[ edit ]
Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem :
Let
C
{\displaystyle {\mathcal {C}}}
be a class of partial computable functions with its index set
C
{\displaystyle C}
. Then
C
{\displaystyle C}
is computable if and only if
C
{\displaystyle C}
is empty, or
C
{\displaystyle C}
is all of
N
{\displaystyle \mathbb {N} }
.
Rice's theorem says "any nontrivial property of partial computable functions is undecidable".[ 1]
Completeness in the arithmetical hierarchy [ edit ]
Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy . Here, we say a
Σ
n
{\displaystyle \Sigma _{n}}
set
A
{\displaystyle A}
is
Σ
n
{\displaystyle \Sigma _{n}}
-complete if, for every
Σ
n
{\displaystyle \Sigma _{n}}
set
B
{\displaystyle B}
, there is an m-reduction from
B
{\displaystyle B}
to
A
{\displaystyle A}
.
Π
n
{\displaystyle \Pi _{n}}
-completeness is defined similarly. Here are some examples:[ 2]
E
m
p
=
{
e
:
W
e
=
∅
}
{\displaystyle \mathrm {Emp} =\{e\,:\,W_{e}=\varnothing \}}
is
Π
1
{\displaystyle \Pi _{1}}
-complete.
F
i
n
=
{
e
:
W
e
is finite
}
{\displaystyle \mathrm {Fin} =\{e\,:\,W_{e}{\text{ is finite}}\}}
is
Σ
2
{\displaystyle \Sigma _{2}}
-complete.
I
n
f
=
{
e
:
W
e
is infinite
}
{\displaystyle \mathrm {Inf} =\{e\,:\,W_{e}{\text{ is infinite}}\}}
is
Π
2
{\displaystyle \Pi _{2}}
-complete.
T
o
t
=
{
e
:
φ
e
is total
}
=
{
e
:
W
e
=
N
}
{\displaystyle \mathrm {Tot} =\{e\,:\,\varphi _{e}{\text{ is total}}\}=\{e:W_{e}=\mathbb {N} \}}
is
Π
2
{\displaystyle \Pi _{2}}
-complete.
C
o
n
=
{
e
:
φ
e
is total and constant
}
{\displaystyle \mathrm {Con} =\{e\,:\,\varphi _{e}{\text{ is total and constant}}\}}
is
Π
2
{\displaystyle \Pi _{2}}
-complete.
C
o
f
=
{
e
:
W
e
is cofinite
}
{\displaystyle \mathrm {Cof} =\{e\,:\,W_{e}{\text{ is cofinite}}\}}
is
Σ
3
{\displaystyle \Sigma _{3}}
-complete.
R
e
c
=
{
e
:
W
e
is computable
}
{\displaystyle \mathrm {Rec} =\{e\,:\,W_{e}{\text{ is computable}}\}}
is
Σ
3
{\displaystyle \Sigma _{3}}
-complete.
E
x
t
=
{
e
:
φ
e
is extendible to a total computable function
}
{\displaystyle \mathrm {Ext} =\{e\,:\,\varphi _{e}{\text{ is extendible to a total computable function}}\}}
is
Σ
3
{\displaystyle \Sigma _{3}}
-complete.
C
p
l
=
{
e
:
W
e
≡
T
H
P
}
{\displaystyle \mathrm {Cpl} =\{e\,:\,W_{e}\equiv _{\mathrm {T} }\mathrm {HP} \}}
is
Σ
4
{\displaystyle \Sigma _{4}}
-complete, where
H
P
{\displaystyle \mathrm {HP} }
is the halting problem .
Empirically, if the "most obvious" definition of a set
A
{\displaystyle A}
is
Σ
n
{\displaystyle \Sigma _{n}}
[resp.
Π
n
{\displaystyle \Pi _{n}}
], we can usually show that
A
{\displaystyle A}
is
Σ
n
{\displaystyle \Sigma _{n}}
-complete [resp.
Π
n
{\displaystyle \Pi _{n}}
-complete].
^ Odifreddi, P. G. Classical Recursion Theory, Volume 1 . ; page 151
^ Soare, Robert I. (2016), "Turing Reducibility" , Turing Computability , Theory and Applications of Computability, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 51– 78, doi :10.1007/978-3-642-31933-4_3 , ISBN 978-3-642-31932-7 , retrieved 2021-04-21
Odifreddi, P. G. (1992). Classical Recursion Theory, Volume 1 . Elsevier. p. 668. ISBN 0-444-89483-7 .
Rogers Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability . MIT Press. p. 482. ISBN 0-262-68052-1 .