“Classification of algebraic semisimple groups”, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Providence, R.I.: American Mathematical Society, 1966, pages 33–62
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse
Source code:
\documentclass{standalone}
\usepackage{amsmath}
\usepackage{tikz}
\usetikzlibrary{calc,decorations.pathreplacing,decorations.markings}
\usetikzlibrary{fit,math,positioning,arrows.meta,shapes.geometric}
\tikzset{
n/.style={fill=black,circle, %% node
inner sep=0pt,minimum size=4pt},
e/.style={fill=black,circle, %% ellipses
inner sep=0pt,minimum size=2pt},
w/.style={fill=white,draw=white,circle, %% white (omitted) nodes
inner sep=0pt,minimum size=4pt},
c/.style={ellipse,draw=black,inner sep=1pt}, %% circles
b/.style={decoration={brace,amplitude=10pt},decorate,thick}, %% brace
a/.style={postaction={decorate,decoration={
markings, mark=at position .5 with
{\arrow[black]{Straight Barb[length=\al]}}
}}} %% mid arrow
}
\def\v{0.5cm} %% vertical node space
\def\h{1cm} %% horizontal node space
\def\s{1.8pt} %% space for weighted edges
\def\al{5pt} %% arrow length
\def\l{2.5*\v} %% label separator
\begin{document}
\begin{tikzpicture}
%% Nodes
\node[n] (1) at (0,0) {};
\foreach \x [evaluate=\x as \y using int(\x-1)]
in {2,...,9} {
\node[n] (\x) [right=\h of \y] {};
}
%% Edges
\foreach \x [evaluate=\x as \y using int(\x+1)]
in {1,3,4,5,7} {
\draw (\x.center) -- (\y.center);
}
\draw[transform canvas = {yshift=\s}] (8.center) -- (9.center);
\draw[transform canvas = {yshift=-\s}] (8.center) -- (9.center);
\draw[draw=white,a] (8) -- (9);
%% Ellipses
\foreach \x [evaluate=\x as \y using int(\x+1)]
in {2,6} {
\foreach \i in {0.25,0.5,0.75} {
\node[e] at ($(\x)!\i!(\y)$) {};
}
}
%% Circles
\foreach \x in {1,...,4} {
\node[c,fit=(\x)] at (\x) {};
}
%% Braces
\draw[b] ($(4) + (0.5*\h,-\v)$) --
node [label={[yshift=-\l] $r$}] {} ($(1) + (-0.5*\h,-\v)$);
\draw[b] ($(9) + (0.5*\h,-\v)$) --
node [label={[yshift=-\l] $n-r$}] {} ($(5) + (-0.5*\h,-\v)$);
\end{tikzpicture}
\end{document}
Captions
Add a one-line explanation of what this file represents
{{Information | description = The Tits index of type B<sub>''n''</sub>, created using tikz. | source = {{Citation | ref=harv | last1=Tits | first1=Jacques | author-link = Jacques Tits | title=Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) | publisher=American Mathematical Society | location=Providence, R.I. |mr=0224710 | year=1966 | chapter=Classification of algebraic semisimple groups | pages=33–62}} | date = 26 June 2018...