Electrovibration
The history of electrovibration goes back to 1954. It was first discovered by accident and E. Mallinckrodt, A. L. Hughes and W. Sleator Jr. reported “that dragging a dry finger over a conductive surface covered with a thin insulating layer and excited with a 110 V signal, created a characteristic rubbery feeling”.[1] In their experiment, the finger and the metal surface create a capacitive setup. The attraction force created between the finger and the surface was too weak to perceive, but it generated a rubbery sensation when the finger was moving on the surface. This sensation was named "electrovibration" by the group.
In around early 2010, Senseg[2][3] and Disney Research[4][5] began developing technology that could bring electrovibration to modern touchscreen devices.
History
[edit]"In summer of 1950, E. Mallinckrodt noted that a certain shiny brass electric light socket did not feel as smooth when the light was burning as it did with the light off".[citation needed] Then Mallinckrodt created a setup to investigate the effect scientifically. He connected an aluminum plate through a variable current-limiting resistor to a 60 Hz, 110 V power supply. Half of the aluminum plate was coated with an insulating varnish, while the rest was left uncoated. As a result of the test he identified that the feeling of friction only appears when there is an insulating barrier between the conductive surface and the sliding finger. He concluded that the finger gets electrically polarized, and this induced charge creates a force between that finger and the surface. He named this phenomenon "electrically induced vibrations".[1]
Electrostatic-force theory
[edit]An electrostatic force is created by applying a time-varying voltage between an electrode and an insulated ground plane. When a finger scans over an insulated plate with a time-varying voltage, the finger works as the induced ground plane. The induced static electricity creates an electric force field between the finger and the surface.
A parallel-plate capacitor model can be used to approximate the skin–surface interface. The electrode acts as one plate, while the conductive subcutaneous layer in the skin acts as the other, thus representing a hybrid natural/artificial electrostatic actuator.[6] The following equation approximates the electrostatic force experienced between the finger and the electrode:
where
- – permittivity of free space,
- – dielectric constant,
- – area of electrodes,
- – voltage applied between the two plates,
- – distance between two plates.
The resulting force is too small to perceive by human skin, but when the finger is moving on the surface, a frictional force appears on the moving finger, which can be expressed as
where is the coefficient of friction.
Further research has shown that this model is not sufficient to explain such skin–surface interfaces.[6]
References
[edit]- ^ a b Mallinckrodt, E.; Hughes, A. L.; Sleator, W. Jr. "Perception by the Skin of Electrically Induced Vibrations". (Extract) Science, Vol. 118, No. 3062, pp. 277–278, 4 September 1953. doi:10.1126/science.118.3062.277. ISSN 0036-8075 (print) Retrieved 7 June 2015 (subscription required) for full access.
- ^ Senseg.
- ^ Wijekoon, Dinesh; Cecchinato, Marta E.; Hoggan, Eve; Linjama, Jukka (2012), "Electrostatic Modulated Friction as Tactile Feedback: Intensity Perception", Haptics: Perception, Devices, Mobility, and Communication, Lecture Notes in Computer Science, vol. 7282, Springer Berlin Heidelberg, pp. 613–624, doi:10.1007/978-3-642-31401-8_54, ISBN 978-3-642-31400-1
- ^ Bau, Olivier; Israr, Ali; Poupyrev, Ivan; Harrison, Chris; Baskinger, Mark; May, Jason (3 October 2010) Electrostatic Vibration (formerly “TeslaTouch”), Disney Research, Retrieved 7 June 2015.
- ^ Bau, O.; Poupyrev, I.; Israr, A.; Harrison, C. (2010). "TeslaTouch" (PDF). Proceedings of the 23nd annual ACM symposium on User interface software and technology. New York, NY: Association for Computing Machinery (ACM) (subscription required). pp. 283–292. doi:10.1145/1866029.1866074. ISBN 978-1-4503-0271-5. S2CID 7033653. Retrieved 7 June 2015 – via chrisharrison.net. (free download, 4.2 MB).
- ^ a b Agarwal, A. K.; Nammi, K.; Kaczmarek, K. A.; Tyler, M. E.; Beebe, D. J. "A hybrid natural/artificial electrostatic actuator for tactile stimulation", Microtechnologies in Medicine & Biology, 2nd Annual International IEEE-EMB Special Topic Conference (2–4 May 2002), (Abstract) pp. 341–345, 2002. ISBN 0-7803-7480-0, doi:10.1109/MMB.2002.1002343. Retrieved 7 June 2015 (subscription required) (also readable at researchgate.net).