Be star
Be Stars are a heterogeneous set of stars with B spectral types and emission lines. A narrower definition, sometimes referred to as Classical Be Stars, is non-supergiant stars with Balmer emission lines in their spectra.
Definition and classification
Many stars have B-type spectra and show hydrogen emission lines, including many supergiants, Herbig Ae/Be stars, mass-transferring binary systems, and B[e] stars. It is preferred to restrict usage of the term Be star to non-supergiant stars showing one or more Balmer series lines in emission. These are sometimes referred to as classical Be stars. The emission lines may be present only at certain times.[1]
Although the Be type spectrum is most strongly produced in class B stars, it is also detected in O and A shell stars, and these are sometimes included under the "Be star" banner. Be stars are primarily considered to be main sequence stars, but a number of subgiants and giant stars are also included.[2]
Discovery
The first star recognized as a Be star was Gamma Cassiopeiae, observed 1866 by Angelo Secchi, the first star ever observed with emission lines.[3] Many other bright stars were found to show similar spectra, although many of these are no longer considered to be classical Be stars.[4] The brightest is Achernar, although it was not recognised as a Be star until 1976.[5][6]
Model
With the understanding of the processes of emission line formation in the early 20th century it became clear that these lines in Be stars must come from circumstellar material ejected by the rapid rotation of the star.[7] All the observational characteristics of Be stars can now be explained with a gaseous disk that is formed of material ejected from the star. The infrared excess and the polarization result from the scattering of stellar light in the disk, while the line emission is formed by re-processing stellar ultraviolet light in the gaseous disc.[2]
Variability
Be stars are typically variable and can either be classified as Gamma Cassiopeiae variables due to the transient nature of the disk and the scattering processes, or as Lambda Eridani variables on account of their pulsational nature.
References
- ^ Porter, John M.; Rivinius, Thomas (2003). "Classical Be Stars". Publications of the Astronomical Society of the Pacific. 115 (812): 1153. Bibcode:10.1086/378307. doi:10.1086/378307.
{{cite journal}}
: Check|bibcode=
length (help) - ^ a b Rivinius, Thomas; Carciofi, Alex C.; Martayan, Christophe (2013). "Classical Be stars". The Astronomy and Astrophysics Review. 21 (1): 69. arXiv:1310.3962. Bibcode:2013A&ARv..21...69R. doi:10.1007/s00159-013-0069-0. ISSN 0935-4956.
- ^ Secchi, A. (1867). "Schreiben des Herrn Prof.Secchi, Dir. Der Sternwarte des Collegio Romano, an den Herausgeber". Astronomische Nachrichten. 68 (4): 63. doi:10.1002/asna.18670680405.
- ^ Merrill, P. W.; Humason, M. L.; Burwell, C. G. (1925). "Discovery and Observations of Stars of Class Be". Astrophysical Journal. 61: 389. Bibcode:1925ApJ....61..389M. doi:10.1086/142899.
- ^ Snow, T. P.; Marlborough, J. M. (1976). "Evidence for mass loss at moderate to high velocity in Be stars". Astrophysical Journal. 203: L87. Bibcode:1976ApJ...203L..87S. doi:10.1086/182025.
- ^ Massa, D. (1975). "The influence of rotation and stellar winds upon the Be phenomenon". Astronomical Society of the Pacific. 87: 777. Bibcode:1975PASP...87..777M. doi:10.1086/129842.
- ^ Struve, Otto (1931). "On the Origin of Bright Lines in Spectra of Stars of Class B". Astrophysical Journal. 73: 94. Bibcode:1931ApJ....73...94S. doi:10.1086/143298.
External links
- Philippe Stee's homepage: Hot and Active Stars Research
- Article from Olivier Thizy: Be Stars