Isotopes of zinc
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (February 2011) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Zn) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant (48.6% natural abundance). Twenty-eight radioisotopes have been characterised with the most stable being 65Zn with a half-life of 244.26 days, and then 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.
Zinc has been proposed as a "salting" material for nuclear weapons. A jacket of isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 65Zn with a half-life of 244 days and produce approximately 1.115 MeV[4] of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several years. Such a weapon is not known to have ever been built, tested, or used.[5]
List of isotopes
[edit]
Nuclide [n 1] |
Z | N | Isotopic mass (Da)[6] [n 2][n 3] |
Half-life[1] [n 4] |
Decay mode[1] [n 5] |
Daughter isotope [n 6] |
Spin and parity[1] [n 7][n 4] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
54Zn | 30 | 24 | 53.99388(23)# | 1.8(5) ms | 2p | 52Ni | 0+ | ||||||||||||
55Zn | 30 | 25 | 54.98468(43)# | 19.8(13) ms | β+, p (91.0%) | 54Ni | 5/2−# | ||||||||||||
β+ (9.0%) | 55Cu | ||||||||||||||||||
56Zn | 30 | 26 | 55.97274(43)# | 32.4(7) ms | β+, p (88.0%) | 55Ni | 0+ | ||||||||||||
β+ (12.0%) | 56Cu | ||||||||||||||||||
57Zn | 30 | 27 | 56.96506(22)# | 45.7(6) ms | β+, p (87%) | 56Ni | 7/2−# | ||||||||||||
β+ (13%) | 57Cu | ||||||||||||||||||
58Zn | 30 | 28 | 57.954590(54) | 86.0(19) ms | β+ (99.3%) | 58Cu | 0+ | ||||||||||||
β+, p (0.7%) | 57Ni | ||||||||||||||||||
59Zn | 30 | 29 | 58.94931189(81) | 178.7(13) ms | β+ (99.90%) | 59Cu | 3/2− | ||||||||||||
β+, p (0.10%) | 58Ni | ||||||||||||||||||
60Zn | 30 | 30 | 59.94184132(59) | 2.38(5) min | β+ | 60Cu | 0+ | ||||||||||||
61Zn | 30 | 31 | 60.939507(17) | 89.1(2) s | β+ | 61Cu | 3/2− | ||||||||||||
62Zn | 30 | 32 | 61.93433336(66) | 9.193(15) h | β+ | 62Cu | 0+ | ||||||||||||
63Zn | 30 | 33 | 62.9332111(17) | 38.47(5) min | β+ | 63Cu | 3/2− | ||||||||||||
64Zn | 30 | 34 | 63.92914178(69) | Observationally Stable[n 8] | 0+ | 0.4917(75) | |||||||||||||
65Zn | 30 | 35 | 64.92924053(69) | 243.94(4) d | EC (98.579(7)%) | 65Cu | 5/2− | ||||||||||||
β+ (1.421(7)%)[7] | |||||||||||||||||||
65mZn | 53.928(10) keV | 1.6(6) μs | IT | 65Zn | 1/2− | ||||||||||||||
66Zn | 30 | 36 | 65.92603364(80) | Stable | 0+ | 0.2773(98) | |||||||||||||
67Zn | 30 | 37 | 66.92712742(81) | Stable | 5/2− | 0.0404(16) | |||||||||||||
67m1Zn | 93.312(5) keV | 9.15(7) μs | IT | 67Zn | 1/2− | ||||||||||||||
67m2Zn | 604.48(5) keV | 333(14) ns | IT | 67Zn | 9/2+ | ||||||||||||||
68Zn | 30 | 38 | 67.92484423(84) | Stable | 0+ | 0.1845(63) | |||||||||||||
69Zn | 30 | 39 | 68.92655036(85) | 56.4(9) min | β− | 69Ga | 1/2− | ||||||||||||
69mZn | 438.636(18) keV | 13.747(11) h | IT (99.97%) | 69Zn | 9/2+ | ||||||||||||||
β− (0.033%) | 69Ga | ||||||||||||||||||
70Zn | 30 | 40 | 69.9253192(21) | Observationally Stable[n 9] | 0+ | 0.0061(10) | |||||||||||||
71Zn | 30 | 41 | 70.9277196(28) | 2.40(5) min | β− | 71Ga | 1/2− | ||||||||||||
71mZn | 157.7(13) keV | 4.148(12) h | β− | 71Ga | 9/2+ | ||||||||||||||
IT? | 71Zn | ||||||||||||||||||
72Zn | 30 | 42 | 71.9268428(23) | 46.5(1) h | β− | 72Ga | 0+ | ||||||||||||
73Zn | 30 | 43 | 72.9295826(20) | 24.5(2) s | β− | 73Ga | 1/2− | ||||||||||||
73mZn | 195.5(2) keV | 13.0(2) ms | IT | 73Zn | 5/2+ | ||||||||||||||
74Zn | 30 | 44 | 73.9294073(27) | 95.6(12) s | β− | 74Ga | 0+ | ||||||||||||
75Zn | 30 | 45 | 74.9328402(21) | 10.2(2) s | β− | 75Ga | 7/2+ | ||||||||||||
75mZn | 126.94(9) keV | 5# s | β−? | 75Ga | 1/2− | ||||||||||||||
IT? | 75Zn | ||||||||||||||||||
76Zn | 30 | 46 | 75.9331150(16) | 5.7(3) s | β− | 76Ga | 0+ | ||||||||||||
77Zn | 30 | 47 | 76.9368872(21) | 2.08(5) s | β− | 77Ga | 7/2+ | ||||||||||||
77mZn | 772.440(15) keV | 1.05(10) s | β− (66%) | 77Ga | 1/2− | ||||||||||||||
IT (34%) | 77Zn | ||||||||||||||||||
78Zn | 30 | 48 | 77.9382892(21) | 1.47(15) s | β− | 78Ga | 0+ | ||||||||||||
β−, n? | 77Ga | ||||||||||||||||||
78mZn | 2673.7(6) keV | 320(6) ns | IT | 78Zn | (8+) | ||||||||||||||
79Zn | 30 | 49 | 78.9426381(24) | 746(42) ms | β− (98.3%) | 79Ga | 9/2+ | ||||||||||||
β−, n (1.7%) | 78Ga | ||||||||||||||||||
79mZn | 942(10) keV[8] | >200 ms | β−? | 79Ga | 1/2+ | ||||||||||||||
IT? | 79Zn | ||||||||||||||||||
80Zn | 30 | 50 | 79.9445529(28) | 562.2(30) ms | β− (98.64%) | 80Ga | 0+ | ||||||||||||
β−, n (1.36%) | 79Ga | ||||||||||||||||||
81Zn | 30 | 51 | 80.9504026(54) | 299.4(21) ms | β− (77%) | 81Ga | (1/2+, 5/2+) | ||||||||||||
β−, n (23%) | 80Ga | ||||||||||||||||||
β−, 2n? | 79Ga | ||||||||||||||||||
82Zn | 30 | 52 | 81.9545741(33) | 177.9(25) ms | β−, n (69%) | 81Ga | 0+ | ||||||||||||
β− (31%) | 82Ga | ||||||||||||||||||
β−, 2n? | 80Ga | ||||||||||||||||||
83Zn | 30 | 53 | 82.96104(32)# | 100(3) ms | β−, n (71%) | 82Ga | 3/2+# | ||||||||||||
β− (29%) | 83Ga | ||||||||||||||||||
β−, 2n? | 81Ga | ||||||||||||||||||
84Zn | 30 | 54 | 83.96583(43)# | 54(8) ms | β−, n (73%) | 83Ga | 0+ | ||||||||||||
β− (27%) | 84Ga | ||||||||||||||||||
β−, 2n? | 82Ga | ||||||||||||||||||
85Zn | 30 | 55 | 84.97305(54)# | 40# ms [>400 ns] | β−? | 85Ga | 5/2+# | ||||||||||||
β−, n? | 84Ga | ||||||||||||||||||
β−, 2n? | 83Ga | ||||||||||||||||||
86Zn[9] | 30 | 56 | 85.97846(54)# | β−? | 86Ga | 0+ | |||||||||||||
β−, n? | 85Ga | ||||||||||||||||||
87Zn[9] | 30 | 57 | |||||||||||||||||
This table header & footer: |
- ^ mZn – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ Believed to undergo β+β+ decay to 64Ni with a half-life over 6.0×1016 y
- ^ Believed to undergo β−β− decay to 70Ge with a half-life over 3.8×1018 y
References
[edit]- ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Zinc". CIAAW. 2007.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Roost, E.; Funck, E.; Spernol, A.; Vaninbroukx, R. (1972). "The decay of 65Zn". Zeitschrift für Physik. 250 (5): 395–412. Bibcode:1972ZPhy..250..395D. doi:10.1007/BF01379752. S2CID 124728537.
- ^ D. T. Win, M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219.
- ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- ^ "65Zn ε decay" (PDF). NNDC Chart of Nuclides.
- ^ Nies, L.; Canete, L.; Dao, D. D.; Giraud, S.; Kankainen, A.; Lunney, D.; Nowacki, F.; Bastin, B.; Stryjczyk, M.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Eronen, T.; Fischer, P.; Flayol, M.; Girard Alcindor, V.; Herlert, A.; Jokinen, A.; Khanam, A.; Köster, U.; Lange, D.; Moore, I. D.; Müller, M.; Mougeot, M.; Nesterenko, D. A.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; de Roubin, A.; Rubchenya, V.; Schweiger, Ch.; Schweikhard, L.; Vilen, M.; Äystö, J. (30 November 2023). "Further Evidence for Shape Coexistence in Zn 79 m near Doubly Magic Ni 78". Physical Review Letters. 131 (22). arXiv:2310.16915. doi:10.1103/PhysRevLett.131.222503.
- ^ a b Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.