Jump to content

Lockheed Martin X-59 Quesst

From Wikipedia, the free encyclopedia
(Redirected from X-59 QueSST)

X-59 Quesst
The X-59 on the ramp at Skunk Works
Role Experimental supersonic aircraft
National origin United States
Manufacturer Lockheed Martin
Design group Swift Engineering[1][self-published source?]
Status In testing
Primary user NASA

The Lockheed Martin X-59 Quesst ("Quiet SuperSonic Technology"), sometimes styled QueSST, is an American experimental supersonic aircraft under development by Skunk Works for NASA's Low-Boom Flight Demonstrator project.[2] Preliminary design started in February 2016, with the X-59 planned to begin flight testing in 2021. After delays, as of January 2024, it is planned to be delivered to NASA for flight testing in 2024. It is expected to cruise at Mach 1.42 (1,510 km/h; 937 mph) at an altitude of 55,000 ft (16,800 m), creating a low 75 effective perceived noise level (EPNdB) thump to evaluate supersonic transport acceptability.

Development

[edit]
A model in a wind tunnel at NASA Langley, September 2017

In February 2016, Lockheed Martin was awarded a preliminary design contract, aiming to fly in the 2020 timeframe.[3] A 9%-scale model was to be wind tunnel tested from Mach 0.3 to Mach 1.6 between February and April 2017.[4] The preliminary design review was originally planned to be completed by June 2017.[5] While NASA received three inquiries for its August 2017 request for proposals, Lockheed was the sole bidder.[6]

On April 2, 2018, NASA awarded Lockheed Martin a $247.5 million contract to design, build and deliver in late 2021 the Low-Boom X-plane. On June 26, 2018, the US Air Force informed NASA it had assigned the X-59 QueSST designation to the demonstrator.[7] By October, NASA Langley had completed[clarification needed] three weeks of wind tunnel testing of an 8%-scale model, with high AOAs up to 50° and 88° at very low speed, up from 13° in previous tunnel campaigns.[8] Testing was for static stability and control, dynamic forced oscillations, and laser flow visualization, expanding on previous experimental and computational predictions.[9]

From November 5, 2018, NASA was to begin tests over two weeks to gather feedback: up to eight thumps a day at different locations to be monitored by 20 noise sensors and described by 400 residents, receiving a $25 per week compensation. To simulate the thump, an F/A-18 Hornet is diving from 50,000 ft (15,200 m) to briefly go supersonic for reduced shock waves over Galveston, Texas, an island, and a stronger boom over water.[10] By then, Lockheed Martin had begun machining the first part in Palmdale, California.[11]

In May 2019, the initial major structural parts were loaded in the tooling assembly.[12] In June, assembly was getting underway.[13] The external vision system (XVS) was flight tested on a King Air at NASA Langley.[14] This is to be followed by high speed wind tunnel tests to verify inlet performance predictions with a 9.5%-scale model at NASA Glenn Research Center.[12]

The critical design review was successfully held on September 9–13, before the IRB report to NASA's Integrated Aviation Systems Program by November.[15] Then, 80–90% of the drawings should be released to engineering.[12] The wing assembly was to be completed in 2020.[13] In December 2020, construction was halfway completed with the first flight then planned for 2022.[16]

After flight-clearance testing at the Armstrong Flight Research Center, an acoustic validation including air-to-air Schlieren imaging backlit by the Sun to confirm the shockwave pattern testing was slated to be done through September 2022.[6][needs update] NASA planned to conduct flight tests over U.S. cities to verify the safety and performance of the X-59's quiet supersonic technologies and evaluate community responses for regulators, which could enable commercial supersonic travel over land.[17][needs update]

As of 2018, community-response flight tests starting in 2023–2025 were planned to be used for ICAO's Committee on Aviation Environmental Protection meeting (CAEP13) establishing a sonic boom standard.[6] As of 2022, the results of the community overflights were slated to be delivered to the ICAO and the FAA in 2027, allowing for a decision to be made to revise the rules on commercial supersonic travel over land in 2028.[18]

NASA reported the installation of the General Electric F414-GE-100 engine on the X-59, which took place at Lockheed Martin's Skunk Works in Palmdale, California early November 2022. The engine is 13 feet (4.0 m) long and produces 22,000 pounds-force (98 kN) of thrust.[19] As of December 2023 and early January 2024, the X-59's first flight is planned for 2024.[20][21]

Lockheed Martin released a video showing an assembled X-59 rolling out of a hangar on August 4, 2023.[22] On January 5, 2024, Lockheed Martin issued a press release about "unveiling" the X-59 within a week,[23][24] which was revealed on January 12, 2024.[25]

In November 2024, the X-59's engine was tested for the first time, with plans for the aircraft's first flight to take place in 2025.[26]

Design

[edit]
X-59 characteristics

The Low-Boom X-plane is 99.7 ft (30.4 m) long with a 29.5 ft (9.0 m) wingspan for a maximum takeoff weight of 32,300 lb (14,700 kg). Propelled by a General Electric F414 engine, it should reach a maximum speed of Mach 1.5 or 990 mph (1,590 km/h), and cruise at Mach 1.42 or 940 mph (1,510 km/h) at 55,000 ft (16,800 m).[27] The cockpit, ejection seat and canopy come from a Northrop T-38 and the landing gear from an F-16.[6] With afterburner, its engine will provide 22,000 lbf (98 kN) of thrust.[28]

As of 2017, the ground noise was expected to be around 60 dB(A), about 1/1000 as loud as current supersonic aircraft. This was to be achieved by using a long, narrow airframe and canards to keep the shock waves from coalescing.[5] A 2018 projection was that the aircraft would create a 75 EPNdB thump on ground, as loud as closing a car door, compared with 105-110 EPNdB for the Concorde.[6] The central engine has a top-mounted intake for low boom, but inlet flow distortion due to vortices is a concern.[12]

The flush cockpit means that the long and pointed nose-cone will obstruct all forward vision. The X-59 will use an enhanced flight vision system (EVS), consisting of a forward 4K camera with a 33° by 19° angle of view, which will compensate for the lack of forward visibility.[6][29]

In January 2019, RTX Corporation subsidiary Collins Aerospace was selected to supply its Pro Line Fusion Cockpit avionics, displaying[clarification needed] the boom on the ground, and EVS with long-wave infrared sensors.[30] The Collins EVS-3600 multispectral imaging system, beneath the nose, is used for landing, while the NASA external vision system (XVS), in front of the cockpit, gives a forward view.[12]

See also

[edit]

Related lists

References

[edit]
  1. ^ "X-59 Quiet SuperSonic Technology (LBFD)". Swift Engineering. Retrieved November 5, 2024.
  2. ^ Gipson, Lillian (October 8, 2019). "NASA's Supersonic X-59 QueSST Coming Together at Famed Factory". NASA. Archived from the original on November 27, 2023.
  3. ^ Banke, Jim (April 22, 2016). "QueSST - New Era of X-Plane Research". NASA. Archived from the original on January 12, 2024. Retrieved February 26, 2017.
  4. ^ Northon, Karen (February 24, 2017). "NASA Wind Tunnel Tests Lockheed Martin's X-Plane Design for a Quieter Supersonic Jet". NASA. Archived from the original on October 3, 2023.
  5. ^ a b Giangreco, Leigh (March 22, 2017). "Lockheed and NASA move toward design review for supersonic X-plane". FlightGlobal. Archived from the original on December 13, 2023.
  6. ^ a b c d e f Warwick, Graham; Norris, Guy (April 4, 2018). "Lockheed To Build NASA's Low-Boom Supersonic X-Plane". Aviation Week Network. Archived from the original on January 15, 2022.
  7. ^ Banke, Jim (June 28, 2018). "NASA's experimental supersonic aircraft now known as X-59 QueSST". NASA. Archived from the original on October 3, 2023.
  8. ^ Warwick, Graham (October 30, 2018). "NASA Wind-Tunnel Tests Mature Low-Boom X-Plane Design". Aviation Week Network. Archived from the original on October 3, 2023.
  9. ^ Trautvetter, Chad (November 6, 2018). "NASA Spools Up Low-boom Supersonic Research". Aviation International News. Archived from the original on October 11, 2023.
  10. ^ Warwick, Graham (November 2, 2018). "NASA To Begin Quiet Supersonic Research Flights In Texas". Aviation Week Network. Archived from the original on October 3, 2023.
  11. ^ Reim, Garrett (November 16, 2018). "Lockheed Martin starts work on X-59 Quiet Supersonic aircraft". FlightGlobal. Archived from the original on January 12, 2024.
  12. ^ a b c d e Norris, Guy (February 19, 2019). "Final Testing Will Clear Way For Assembly Of Supersonic X-59A". Aviation Week Network. Archived from the original on June 23, 2021.
  13. ^ a b Norris, Guy (June 18, 2019). "Lockheed Martin Begins Assembly Of X-59 Low-Boom Demonstrator". Aviation Week Network. Archived from the original on February 25, 2021.
  14. ^ Warwick, Graham (September 23, 2019). "NASA's External Vision System Is Ready For Low-boom Supersonic X-59". Aviation Week Network. Archived from the original on October 3, 2023.
  15. ^ Warwick, Graham (September 30, 2019). "The Week In Technology, Sept. 30-Oct. 4, 2019". Aviation Week Network. Archived from the original on June 8, 2023.
  16. ^ O'Connor, Kate (December 23, 2020). "NASA Marks Halfway Point In Supersonic X-Plane Construction". AVweb. Archived from the original on October 3, 2023.
  17. ^ "NASA Awards Contract to Build Quieter Supersonic Aircraft". NASA. April 3, 2018. Archived from the original on October 3, 2023.
  18. ^ Hoover, Rachel (March 21, 2022). "Ames' Contributions to the X-59 Quiet SuperSonic Technology Aircraft". NASA. Archived from the original on January 12, 2024. Retrieved March 24, 2022.
  19. ^ Kamlet, Matt (November 14, 2022). "Jet Engine Installed on NASA's X-59". NASA. Archived from the original on January 13, 2024. Retrieved November 18, 2022.
  20. ^ "NASA's Newly Unveiled X-59 Quiet Supersonic Plane Eyes First Flight (Trailer)". YouTube. NASA. January 12, 2024. Archived from the original on January 15, 2024. Retrieved January 15, 2024.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  21. ^ Margetta, Robert (October 12, 2023). "NASA Targets 2024 for First Flight of X-59 Experimental Aircraft". NASA. Archived from the original on January 15, 2024.
  22. ^ Tingley, Brett (August 4, 2023). "Watch NASA's sci-fi-looking X-59 'quiet' supersonic jet roll out of the hangar (video)". Space.com. Archived from the original on January 12, 2024.
  23. ^ "Skunk Works® Unveils the X-59, First Look at the Future of Commercial Supersonic Flight". Lockheed Martin. Archived from the original on January 11, 2024. Retrieved January 8, 2024.
  24. ^ Rajagopalan, Rishikesh (January 9, 2024). "NASA set to unveil experimental X-59 aircraft aimed at commercial supersonic travel". CBS News. Archived from the original on January 15, 2024. Retrieved January 10, 2024.
  25. ^ "Skunk Works® Rolls Out X-59, NASA's Newest X-Plane". PR Newswire. January 12, 2024. Archived from the original on January 16, 2024. Retrieved January 12, 2024.
  26. ^ Philman-Blair, Amber (November 6, 2024). "X-59 Fires Up its Engine for First Time on its Way to Takeoff". NASA. Retrieved December 11, 2024.
  27. ^ Banke, Jim (April 3, 2018). "New NASA X-Plane Construction Begins Now". NASA. Archived from the original on September 30, 2023.
  28. ^ Daugherty, Gina (June 19, 2018). "Iconic goes supersonic!". General Electric Aerospace. Archived from the original on October 3, 2023.
  29. ^ Trevithick, Joseph (August 23, 2018). "NASA's X-59A Quiet Supersonic Test Jet Will Have Zero Forward Visibility For Its Pilot". The Drive. Archived from the original on September 3, 2023.
  30. ^ Warwick, Graham (January 21, 2019). "The Week In Technology, Jan. 21-26, 2019". Aviation Week Network. Archived from the original on September 30, 2023.
[edit]