This template creates a numbered block which is usually used to number mathematical and chemical formulae. This template can be used together with {{EquationRef}} and {{EquationNote}} to produce formatted numbered equations if a back reference to an equation is wanted. Alternatively, {{Numbered block 2}} can also be used directly—a template that combines the main functionalities of both {{Numbered block}} and {{EquationRef}}.
Parameters |1=, |2=, and |3= of this template are required. In addition, there are five optional parameters |RawN=, |LnSty=, |Border=, |Cl= and |Attr=.
|1=
Specify indentation. The more colons : you put, the further indented the block will be, up to a limit of 20. This parameter can be empty if no indentation is needed.
|2=: The body or content of the block.
|3=: Specify the block number.
|RawN=
If a non-empty non-whitespace value, no extra formatting will be applied to the block number.
|LnSty=: Specify the line style.
|Border=: If set, put a box around the equation. (Experimental.)
|Cl=
The value of this parameter will be added to the class attribute of the outermost element of the template. Therefore, this parameter must conform to the syntax of the class attribute, which is a space-separated list of classes.
|Attr=
Specify the attributes of the outermost element of the template. Default is style="margin-left: {{#expr:1.6 * indentation_level}}em;" where indentation_level is derived from |1=. Thus, this parameter determines the indentation of the template by default. When specifying the attributes of the outermost element of the template through this parameter, it is recommended to assign an appropriate value to this parameter to replace the original role of the default value and obtain the expected indentation effect. Besides, since the class attribute is already used internally by the template, specifying the class attribute directly in this parameter may cause problems. The class attribute should be set by assigning a value to |Cl= instead. (for wrapper templates)
The following equations
:<math>3x+2y-z=1</math>::<math>2x-2y+4z=-2</math>:::<math>-2x+y-2z=0</math>
form a system of three equations.
The following equations
form a system of three equations.
The following equations
:{{Numbered block||<math>3x+2y-z=1</math>|1}}::{{Numbered block||<math>2x-2y+4z=-2</math>|2}}:::{{Numbered block||<math>-2x+y-2z=0</math>|3}}
form a system of three equations.
The result is not rendered as there may be lint errors.
The following equations
<dl><dd>{{Numbered block||<math>3x+2y-z=1</math>|1}}<dl><dd>{{Numbered block||<math>2x-2y+4z=-2</math>|2}}<dl><dd>{{Numbered block||<math>-2x+y-2z=0</math>|3}}</dd></dl></dd></dl></dd></dl>
form a system of three equations.
The following equations
1
2
3
form a system of three equations.
The following equations
<divstyle="margin-left: 1.6em;">{{Numbered block||<math>3x+2y-z=1</math>|1}}<divstyle="margin-left: 1.6em;">{{Numbered block||<math>2x-2y+4z=-2</math>|2}}<divstyle="margin-left: 1.6em;">{{Numbered block||<math>-2x+y-2z=0</math>|3}}</div></div></div>
form a system of three equations.
The following equations
1
2
3
form a system of three equations.
The following equations
<divstyle="margin-left: calc(1.6em * 1);">{{Numbered block||<math>3x+2y-z=1</math>|1}}</div><divstyle="margin-left: calc(1.6em * 2);">{{Numbered block||<math>2x-2y+4z=-2</math>|2}}</div><divstyle="margin-left: calc(1.6em * 3);">{{Numbered block||<math>-2x+y-2z=0</math>|3}}</div>
form a system of three equations.
<!-- LnSty is not specified. -->{{Numbered block|:|<math>y=ax+b</math>|Eq. 3|Border=1}}
Eq. 3
<!-- LnSty is specified. -->{{Numbered block|:|<math>y=ax+b</math>|Eq. 3|LnSty=0.7em solid #e500e5|Border=1}}
Eq. 3
When content of the blocks and block numbers are far apart
Markup
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin\theta\cos\theta</math>|3=5}}
Renders as
1
2
3
4
5
Markup
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex dotted Gainsboro}}{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex dotted Gainsboro}}{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin\theta\cos\theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
Renders as
1
2
3
4
5
Markup
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex none Gainsboro}}{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex none Gainsboro}}{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin\theta\cos\theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
Renders as
1
2
3
4
5
Markup
<divstyle="background-color: Beige;">{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}</div><divstyle="background-color: none;">{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}</div><divstyle="background-color: Beige;">{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}</div><divstyle="background-color: none;">{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}</div><divstyle="background-color: Beige;">{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin\theta\cos\theta</math>|3=5}}</div>
Renders as
1
2
3
4
5
Markup
(mouse over the row you want to highlight)
{{row hover highlight}}{|class="hover-highlight"style="width: 100%; border-collapse: collapse; margin: 0; padding: 0;"|-|{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}|-|{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}|-|{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}|-|{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}|-|{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin\theta\cos\theta</math>|3=5}}|}
Renders as
(mouse over the row you want to highlight)
1
2
3
4
5
Positioning relative to surrounding images
Numbered blocks should be able to be placed around images that take up space on the left or right side of the screen. To ensure numbered block has access to the entire line, consider using a {{clear}}-like template.
To illustrate, consider the example:
Markup
[[Image:Bnet_fan2.png|frame|right|Fig.1: Bayesian Network representation of Eq.(6)]]
[[Image:Bnet_fan2.png|frame|left|Fig.1: Bayesian Network representation of Eq.(6)]]
<br><br>A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of
variables and their probabilistic independencies. For example, a Bayesian network could represent the
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
{{Numbered block|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}
Renders as
A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of
variables and their probabilistic independencies. For example, a Bayesian network could represent the
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
,
Eq.(6)
If it is desirable for the numbered block to span the entire line, a {{clear}} should be placed before it.
Markup
[[Image:Bnet_fan2.png|frame|right|Fig.1: Bayesian Network representation of Eq.(6)]]
[[Image:Bnet_fan2.png|frame|left|Fig.1: Bayesian Network representation of Eq.(6)]]
<br><br>A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of
variables and their probabilistic independencies. For example, a Bayesian network could represent the
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
{{clear}}
{{Numbered block|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}
Renders as
A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of
variables and their probabilistic independencies. For example, a Bayesian network could represent the
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
,
Eq.(6)
Table caveat
Because {{Numbered block}} is implemented as a table, putting {{Numbered block}} within a table yields a nested table. Due to a bug in MediaWiki's handling of nested tables, {{Numbered block}} must be used carefully in this case. In particular, when indentation for the outer table is desired, use explicit <dl><dd>...</dd></dl> tags for indentation instead of a leading colon (:).
which shows how the outer <dl><dd>...</dd></dl> tags give the same indentation as a single colon (:) preceding the table should.
For another example,
Markup
<dl><dd><dl><dd>{||-|The first parameter for indentation still works when used inside table.
{{Numbered block|::::|<math>ax^2+bx+c=0</math>|Level 4}}{{Numbered block|:::|<math>ax^2+bx+c=0</math>|Level 3}}{{Numbered block|::|<math>ax^2+bx+c=0</math>|Level 2}}{{Numbered block|:|<math>ax^2+bx+c=0</math>|Level 1}}{{Numbered block||<math>ax^2+bx+c=0</math>|Level 0}}|-|}</dd></dl></dd></dl>
Renders as
The first parameter for indentation still works when used inside table.
Level 4
Level 3
Level 2
Level 1
Level 0
which uses two sets of explicit tags to give the same indentation as two colons (::).