Jump to content

Orders of magnitude (magnetic field)

From Wikipedia, the free encyclopedia

This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.

The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment).

Note:

  • Traditionally, the magnetizing field, H, is measured in amperes per meter.
  • Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m2].[1]
  • One tesla is equal to 104 gauss.
  • Magnetic field drops off as the inverse cube of the distance (1/distance3) from a dipole source.
  • Energy required to produce laboratory magnetic fields increases with the square of magnetic field.[2]

Examples

[edit]

These examples attempt to make the measuring point clear, usually the surface of the item mentioned.

Magnetic field strength (from lower to higher orders of magnitude)
Factor

(tesla)

SI name SI

Value

CGS

Value

Example of magnetic field strength
10−18 T attotesla 1 aT 10 fG
5 aT 50 fG Sensitivity of Gravity Probe B gyroscope's "SQUID" magnetometer (most sensitive when averaged over days)[3]
10−17 T 10 aT 100 fG
10−16 T 100 aT 1 pG
10−15 T femtotesla 1 fT 10 pG
2 fT 20 pG
10−14 T 10 fT 100 pG
10−13 T 100 fT 1 nG Human brain
10−12 T picotesla 1 pT 10 nG
10−11 T 10 pT 100 nG "Potholes" in the magnetic field found in the heliosheath around the Solar System reported by Voyager 1 (NASA, 2006)[4]
10−10 T 100 pT 1 μG Heliosphere
10−9 T nanotesla 1 nT 10 μG
10−8 T 10 nT 100 μG
10−7 T 100 nT 1 mG Coffeemaker (30 cm or 1 ft away)[5]
100 nT to 500 nT 1 mG to 5 mG Residential electric distribution lines (34.5 kV) (15 m or 49 ft away)[5][6]
10−6 T microtesla 1 μT 10 mG Blender (30 cm or 1 ft away)[5]
1.3 μT to 2.7 μT 13 mG to 27 mG High power (500 kV) transmission lines (30 m or 100 ft away)[6]
6 μT 60 mG Microwave oven (30 cm or 1 ft away)[5]
10−5 T 10 μT 100 mG
24 μT 240 mG Magnetic tape near tape head
31 μT 310 mG Earth's magnetic field at 0° latitude (on the equator)
58 μT 580 mG Earth's magnetic field at 50° latitude
10−4 T 100 μT 1 G Magnetic flux density that will induce an electromotive force of 10−8 volts in each centimeter of a wire moving perpendicularly at 1 centimeter/second by definition (1 gauss = 1 maxwell/centimeter²)[7]
500 μT 5 G Suggested exposure limit for cardiac pacemakers by American Conference of Governmental Industrial Hygienists (ACGIH)
10−3 T millitesla 1 mT 10 G Refrigerator magnets (10 G[8] to 100 G[9])
10−2 T centitesla 10 mT 100 G
30 mT 300 G Penny-sized ferrite magnet
10−1 T decitesla 100 mT 1 kG Penny-sized neodymium magnet
150 mT 1.5 kG Sunspot
100 T tesla 1 T 10 kG Inside the core of a 60 Hz power transformer (1 T to 2 T as of 2001)[10][11] or voice coil gap of a loudspeaker magnet (1 T to 2.4 T as of 2006)[12]
1.5 T to 7 T 15 kG to 70 kG Medical magnetic resonance imaging systems (in practice)[13][14][15]
9.4 T 94 kG Experimental magnetic resonance imaging systems: NMR spectrometer at 400 MHz (9.4 T) to 500 MHz (11.7 T)
101 T decatesla 10 T 100 kG
11.7 T 117 kG
16 T 160 kG Levitate a frog by distorting its atomic orbitals[16]
23.5 T 235 kG 1 GHz NMR spectrometer[17]
32 T 235 kG Strongest continuous magnet field produced by all-superconducting magnet[18][19]
38 T 380 kG Strongest continuous magnetic field produced by non-superconductive resistive magnet[20]
45.22 T 452.2 kG Strongest non-tiny continuous magnetic field produced in a laboratory (Steady High Magnetic Field Facility (SHMFF) in Hefei, China, 2022),[21] beating previous 45 T record (National High Magnetic Field Laboratory's FSU, USA, 1999)[22] (both are hybrid magnets, combining a superconducting magnet with a resistive magnet)
45.5 T 455 kG Strongest continuous magnetic field produced in a laboratory (National High Magnetic Field Laboratory's FSU, USA, 2019), though the magnet is tiny (only 390 grams)[23]
102 T hectotesla 100 T 1 MG Strongest pulsed non-destructive ("multi-shot") magnetic field produced in a laboratory (Pulsed Field Facility at National High Magnetic Field Laboratory's Los Alamos National Laboratory, Los Alamos, NM, USA)[24]
103 T kilotesla 1 kT 10 MG
1.2 kT 12 MG Record for indoor pulsed magnetic field, (University of Tokyo, 2018)[25]
2.8 kT 28 MG Record for human produced, pulsed magnetic field, (VNIIEF, 2001)[26]
104 T 10 kT 100 MG
35 kT 350 MG Felt by valence electrons in a xenon atom due to the spin–orbit effect[27]
105 T 100 kT 1 GG Non-magnetar neutron stars[28]
106 T megatesla 1 MT 10 GG
107 T 10 MT 100 GG
108 T 100 MT 1 TG
109 T gigatesla 1 GT 10 TG Schwinger limit (~4.41 GT) above which the electromagnetic field becomes nonlinear
1010 T 10 GT 100 TG Magnetar neutron stars[29]
1011 T 100 GT 1 PG
1012 T teratesla 1 TT 10 PG
1013 T 10 TT 100 PG
16 TT 160 PG Swift J0243.6+6124 most magnetic pulsar[30][31]
1014 T 100 TT 1 EG Magnetic fields inside heavy ion collisions at RHIC[32][33]

References

[edit]
  1. ^ "Bureau International des Poids et Mesures, The International System of Units (SI), 8th edition 2006" (PDF). bipm.org. 2012-10-01. Retrieved 2013-05-26.
  2. ^ Laboratory, National High Magnetic Field. "Tesla Definition - MagLab". nationalmaglab.org. Retrieved 2023-12-29.
  3. ^ Range, Shannon K'doah. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. National Aeronautics and Space Administration. October 2004.
  4. ^ "Surprises from the Edge of the Solar System". NASA. 2006-09-21. Archived from the original on 2008-09-29. Retrieved 2017-07-12.
  5. ^ a b c d "Magnetic Field Levels Around Homes" (PDF). UC San Diego Dept. of Environment, Health & Safety (EH&S). p. 2. Archived from the original (PDF) on 2021-04-28. Retrieved 2017-03-07.
  6. ^ a b "EMF in Your Environment: Magnetic Field Measurements of Everyday Electrical Devices". United States Environmental Protection Agency. 1992. pp. 23–24. Retrieved 2017-03-07.
  7. ^ "Gauss | magnetic field, electromagnetism, mathematics | Britannica". www.britannica.com. Retrieved 2023-12-30.
  8. ^ adamsmagnetic (2021-01-04). "What Does Gauss Mean & What Does Gauss Measure?". Adams Magnetic Products, LLC. Retrieved 2023-12-29. [T]he pizza-shaped refrigerator magnet you got from your local pizzeria is 10 gauss
  9. ^ Laboratory, National High Magnetic Field. "Tesla Definition - MagLab". nationalmaglab.org. Retrieved 2023-12-29. A refrigerator magnet is 100 gauss, a strong refrigerator magnet.
  10. ^ Johnson, Gary L. (2001-10-29). "Inductors and transformers" (PDF). eece.ksu.edu. Archived from the original (PDF) on 2007-05-07. Retrieved 2013-05-26. A modern well-designed 60 Hz power transformer will probably have a magnetic flux density between 1 and 2 T inside the core.
  11. ^ "Trafo-Bestimmung 3von3". radiomuseum.org. 2009-07-11. Retrieved 2013-06-01.
  12. ^ Elliot, Rod (2006-12-16). "Power Handling Vs. Efficiency". Archived from the original on 2018-08-07. Retrieved 2008-02-17. Typical flux densities for (half decent) loudspeakers range from around 1 Tesla (10,000 Gauss) up to around 2.4T, and I would suggest that anything less than 1T is next to useless. Very few drivers use magnetic materials that will provide much more than 1.8T across the gap...
  13. ^ Savage, Niel (2013-10-23). "The World's Most Powerful MRI Takes Shape".
  14. ^ Smith, Hans-Jørgen. "Magnetic resonance imaging". Medcyclopaedia Textbook of Radiology. GE Healthcare. Archived from the original on 2012-02-07. Retrieved 2007-03-26.
  15. ^ Orenstein, Beth W. (2006-02-16). "Ultra High-Field MRI — The Pull of Big Magnets". Radiology Today. Vol. 7, no. 3. p. 10. Archived from the original on March 15, 2008. Retrieved 2008-07-10.
  16. ^ "Frog defies gravity". New Scientist. No. 2077. 12 April 1997.
  17. ^ "23.5 Tesla Standard-Bore, Persistent Superconducting Magnet". Archived from the original on 2013-06-28. Retrieved 2013-05-08.
  18. ^ "32 Tesla All-Superconducting Magnet". National High Magnetic Field Laboratory.
  19. ^ Liu, Jianhua; Wang, Qiuliang; Qin, Lang; Zhou, Benzhe; Wang, Kangshuai; Wang, Yaohui; Wang, Lei; Zhang, Zili; Dai, Yinming; Liu, Hui; Hu, Xinning; Wang, Hui; Cui, Chunyan; Wang, Dangui; Wang, Hao (2020-03-01). "World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet". Superconductor Science and Technology. 33 (3): 03LT01. Bibcode:2020SuScT..33cLT01L. doi:10.1088/1361-6668/ab714e. ISSN 0953-2048. S2CID 213171620.
  20. ^ ingevoerd, Geen OWMS velden. "HFML sets world record with a new 38 tesla magnet". Radboud Universiteit.
  21. ^ "World's strongest steady magnetic field generated in China". New Atlas. 2022-08-16. Retrieved 2022-08-22.
  22. ^ "Mag Lab Press Release: World's Most Powerful Magnet Tested Ushers in New Era for Steady High Field Research (December 17, 1999)". legacywww.magnet.fsu.edu. Retrieved 2022-08-22.
  23. ^ Laboratory, National High Magnetic Field. "With mini magnet, National MagLab creates world-record magnetic field - MagLab". nationalmaglab.org. Archived from the original on 2023-06-10. Retrieved 2023-12-28.
  24. ^ Laboratory, Los Alamos National. "Physical Sciences | Organizations". Los Alamos National Laboratory. Retrieved 2023-12-29.
  25. ^ Nakamura, D.; Ikeda, A.; Sawabe, H.; Matsuda, Y. H.; Takeyama, S. (2018). "Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression". Review of Scientific Instruments. 89 (9): 095106. Bibcode:2018RScI...89i5106N. doi:10.1063/1.5044557. PMID 30278742. S2CID 52908507.
  26. ^ Bykov, A.I.; Dolotenko, M.I.; Kolokolchikov, N.P.; Selemir, V.D.; Tatsenko, O.M. (2001). "VNIIEF achievements on ultra-high magnetic fields generation". Physica B: Condensed Matter. 294–295: 574–578. Bibcode:2001PhyB..294..574B. doi:10.1016/S0921-4526(00)00723-7.
  27. ^ Herman, Frank (15 December 1963). "Relativistic Corrections to the Band Structure of Tetrahedrally Bonded Semiconductors". Physical Review Letters. 11 (541): 541–545. Bibcode:1963PhRvL..11..541H. doi:10.1103/PhysRevLett.11.541.
  28. ^ Reisenegger, A. (2003). "Origin and Evolution of Neutron Star Magnetic Fields". arXiv:astro-ph/0307133.
  29. ^ Kaspi, Victoria M.; Beloborodov, Andrei M. (2017). "Magnetars". Annual Review of Astronomy and Astrophysics. 55 (1): 261–301. arXiv:1703.00068. Bibcode:2017ARA&A..55..261K. doi:10.1146/annurev-astro-081915-023329.
  30. ^ Kong, Ling-Da; Zhang, Shu; Zhang, Shuang-Nan; Ji, Long; Doroshenko, Victor; Santangelo, Andrea; Chen, Yu-Peng; Lu, Fang-Jun; Ge, Ming-Yu; Wang, Peng-Ju; Tao, Lian; Qu, Jin-Lu; Li, Ti-Pei; Liu, Cong-Zhan; Liao, Jin-Yuan (2022-07-01). "Insight-HXMT Discovery of the Highest-energy CRSF from the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124". The Astrophysical Journal Letters. 933 (1): L3. arXiv:2206.04283. Bibcode:2022ApJ...933L...3K. doi:10.3847/2041-8213/ac7711. ISSN 2041-8205.
  31. ^ "Astronomers measure strongest magnetic field ever detected". New Atlas. 2022-07-15. Retrieved 2022-08-22.
  32. ^ Tuchin, Kirill (2013). "Particle production in strong electromagnetic fields in relativistic heavy-ion collisions". Adv. High Energy Phys. 2013: 490495. arXiv:1301.0099. doi:10.1155/2013/490495. S2CID 4877952.
  33. ^ Bzdak, Adam; Skokov, Vladimir (29 March 2012). "Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions". Physics Letters B. 710 (1): 171–174. arXiv:1111.1949. Bibcode:2012PhLB..710..171B. doi:10.1016/j.physletb.2012.02.065. S2CID 118462584.

See also

[edit]