Orders of magnitude (magnetic field)
Appearance
(Redirected from Orders of magnitude (magnetic flux density))
This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.
The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment).
Note:
- Traditionally, the magnetizing field, H, is measured in amperes per meter.
- Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m2].[1]
- One tesla is equal to 104 gauss.
- Magnetic field drops off as the inverse cube of the distance (1/distance3) from a dipole source.
- Energy required to produce laboratory magnetic fields increases with the square of magnetic field.[2]
Examples
[edit]These examples attempt to make the measuring point clear, usually the surface of the item mentioned.
Factor
(tesla) |
SI name | SI
Value |
CGS
Value |
Example of magnetic field strength |
---|---|---|---|---|
10−18 T | attotesla | 1 aT | 10 fG | |
5 aT | 50 fG | Sensitivity of Gravity Probe B gyroscope's "SQUID" magnetometer (most sensitive when averaged over days)[3] | ||
10−17 T | 10 aT | 100 fG | ||
10−16 T | 100 aT | 1 pG | ||
10−15 T | femtotesla | 1 fT | 10 pG | |
2 fT | 20 pG | |||
10−14 T | 10 fT | 100 pG | ||
10−13 T | 100 fT | 1 nG | Human brain | |
10−12 T | picotesla | 1 pT | 10 nG | |
10−11 T | 10 pT | 100 nG | "Potholes" in the magnetic field found in the heliosheath around the Solar System reported by Voyager 1 (NASA, 2006)[4] | |
10−10 T | 100 pT | 1 μG | Heliosphere | |
10−9 T | nanotesla | 1 nT | 10 μG | |
10−8 T | 10 nT | 100 μG | ||
10−7 T | 100 nT | 1 mG | Coffeemaker (30 cm or 1 ft away)[5] | |
100 nT to 500 nT | 1 mG to 5 mG | Residential electric distribution lines (34.5 kV) (15 m or 49 ft away)[5][6] | ||
10−6 T | microtesla | 1 μT | 10 mG | Blender (30 cm or 1 ft away)[5] |
1.3 μT to 2.7 μT | 13 mG to 27 mG | High power (500 kV) transmission lines (30 m or 100 ft away)[6] | ||
6 μT | 60 mG | Microwave oven (30 cm or 1 ft away)[5] | ||
10−5 T | 10 μT | 100 mG | ||
24 μT | 240 mG | Magnetic tape near tape head | ||
31 μT | 310 mG | Earth's magnetic field at 0° latitude (on the equator) | ||
58 μT | 580 mG | Earth's magnetic field at 50° latitude | ||
10−4 T | 100 μT | 1 G | Magnetic flux density that will induce an electromotive force of 10−8 volts in each centimeter of a wire moving perpendicularly at 1 centimeter/second by definition (1 gauss = 1 maxwell/centimeter²)[7] | |
500 μT | 5 G | Suggested exposure limit for cardiac pacemakers by American Conference of Governmental Industrial Hygienists (ACGIH) | ||
10−3 T | millitesla | 1 mT | 10 G | Refrigerator magnets (10 G[8] to 100 G[9]) |
10−2 T | centitesla | 10 mT | 100 G | |
30 mT | 300 G | Penny-sized ferrite magnet | ||
10−1 T | decitesla | 100 mT | 1 kG | Penny-sized neodymium magnet |
150 mT | 1.5 kG | Sunspot | ||
100 T | tesla | 1 T | 10 kG | Inside the core of a 60 Hz power transformer (1 T to 2 T as of 2001[update])[10][11] or voice coil gap of a loudspeaker magnet (1 T to 2.4 T as of 2006[update])[12] |
1.5 T to 7 T | 15 kG to 70 kG | Medical magnetic resonance imaging systems (in practice)[13][14][15] | ||
9.4 T | 94 kG | Experimental magnetic resonance imaging systems: NMR spectrometer at 400 MHz (9.4 T) to 500 MHz (11.7 T) | ||
101 T | decatesla | 10 T | 100 kG | |
11.7 T | 117 kG | |||
16 T | 160 kG | Levitate a frog by distorting its atomic orbitals[16] | ||
23.5 T | 235 kG | 1 GHz NMR spectrometer[17] | ||
32 T | 235 kG | Strongest continuous magnet field produced by all-superconducting magnet[18][19] | ||
38 T | 380 kG | Strongest continuous magnetic field produced by non-superconductive resistive magnet[20] | ||
45.22 T | 452.2 kG | Strongest non-tiny continuous magnetic field produced in a laboratory (Steady High Magnetic Field Facility (SHMFF) in Hefei, China, 2022),[21] beating previous 45 T record (National High Magnetic Field Laboratory's FSU, USA, 1999)[22] (both are hybrid magnets, combining a superconducting magnet with a resistive magnet) | ||
45.5 T | 455 kG | Strongest continuous magnetic field produced in a laboratory (National High Magnetic Field Laboratory's FSU, USA, 2019), though the magnet is tiny (only 390 grams)[23] | ||
102 T | hectotesla | 100 T | 1 MG | Strongest pulsed non-destructive ("multi-shot") magnetic field produced in a laboratory (Pulsed Field Facility at National High Magnetic Field Laboratory's Los Alamos National Laboratory, Los Alamos, NM, USA)[24] |
103 T | kilotesla | 1 kT | 10 MG | |
1.2 kT | 12 MG | Record for indoor pulsed magnetic field, (University of Tokyo, 2018)[25] | ||
2.8 kT | 28 MG | Record for human produced, pulsed magnetic field, (VNIIEF, 2001)[26] | ||
104 T | 10 kT | 100 MG | ||
35 kT | 350 MG | Felt by valence electrons in a xenon atom due to the spin–orbit effect[27] | ||
105 T | 100 kT | 1 GG | Non-magnetar neutron stars[28] | |
106 T | megatesla | 1 MT | 10 GG | |
107 T | 10 MT | 100 GG | ||
108 T | 100 MT | 1 TG | ||
109 T | gigatesla | 1 GT | 10 TG | Schwinger limit (~4.41 GT) above which the electromagnetic field becomes nonlinear |
1010 T | 10 GT | 100 TG | Magnetar neutron stars[29] | |
1011 T | 100 GT | 1 PG | ||
1012 T | teratesla | 1 TT | 10 PG | |
1013 T | 10 TT | 100 PG | ||
16 TT | 160 PG | Swift J0243.6+6124 most magnetic pulsar[30][31] | ||
1014 T | 100 TT | 1 EG | Magnetic fields inside heavy ion collisions at RHIC[32][33] |
References
[edit]- ^ "Bureau International des Poids et Mesures, The International System of Units (SI), 8th edition 2006" (PDF). bipm.org. 2012-10-01. Retrieved 2013-05-26.
- ^ Laboratory, National High Magnetic Field. "Tesla Definition - MagLab". nationalmaglab.org. Retrieved 2023-12-29.
- ^ Range, Shannon K'doah. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. National Aeronautics and Space Administration. October 2004.
- ^ "Surprises from the Edge of the Solar System". NASA. 2006-09-21. Archived from the original on 2008-09-29. Retrieved 2017-07-12.
- ^ a b c d "Magnetic Field Levels Around Homes" (PDF). UC San Diego Dept. of Environment, Health & Safety (EH&S). p. 2. Archived from the original (PDF) on 2021-04-28. Retrieved 2017-03-07.
- ^ a b "EMF in Your Environment: Magnetic Field Measurements of Everyday Electrical Devices". United States Environmental Protection Agency. 1992. pp. 23–24. Retrieved 2017-03-07.
- ^ "Gauss | magnetic field, electromagnetism, mathematics | Britannica". www.britannica.com. Retrieved 2023-12-30.
- ^ adamsmagnetic (2021-01-04). "What Does Gauss Mean & What Does Gauss Measure?". Adams Magnetic Products, LLC. Retrieved 2023-12-29.
[T]he pizza-shaped refrigerator magnet you got from your local pizzeria is 10 gauss
- ^ Laboratory, National High Magnetic Field. "Tesla Definition - MagLab". nationalmaglab.org. Retrieved 2023-12-29.
A refrigerator magnet is 100 gauss, a strong refrigerator magnet.
- ^ Johnson, Gary L. (2001-10-29). "Inductors and transformers" (PDF). eece.ksu.edu. Archived from the original (PDF) on 2007-05-07. Retrieved 2013-05-26.
A modern well-designed 60 Hz power transformer will probably have a magnetic flux density between 1 and 2 T inside the core.
- ^ "Trafo-Bestimmung 3von3". radiomuseum.org. 2009-07-11. Retrieved 2013-06-01.
- ^ Elliot, Rod (2006-12-16). "Power Handling Vs. Efficiency". Archived from the original on 2018-08-07. Retrieved 2008-02-17.
Typical flux densities for (half decent) loudspeakers range from around 1 Tesla (10,000 Gauss) up to around 2.4T, and I would suggest that anything less than 1T is next to useless. Very few drivers use magnetic materials that will provide much more than 1.8T across the gap...
- ^ Savage, Niel (2013-10-23). "The World's Most Powerful MRI Takes Shape".
- ^ Smith, Hans-Jørgen. "Magnetic resonance imaging". Medcyclopaedia Textbook of Radiology. GE Healthcare. Archived from the original on 2012-02-07. Retrieved 2007-03-26.
- ^ Orenstein, Beth W. (2006-02-16). "Ultra High-Field MRI — The Pull of Big Magnets". Radiology Today. Vol. 7, no. 3. p. 10. Archived from the original on March 15, 2008. Retrieved 2008-07-10.
- ^ "Frog defies gravity". New Scientist. No. 2077. 12 April 1997.
- ^ "23.5 Tesla Standard-Bore, Persistent Superconducting Magnet". Archived from the original on 2013-06-28. Retrieved 2013-05-08.
- ^ "32 Tesla All-Superconducting Magnet". National High Magnetic Field Laboratory.
- ^ Liu, Jianhua; Wang, Qiuliang; Qin, Lang; Zhou, Benzhe; Wang, Kangshuai; Wang, Yaohui; Wang, Lei; Zhang, Zili; Dai, Yinming; Liu, Hui; Hu, Xinning; Wang, Hui; Cui, Chunyan; Wang, Dangui; Wang, Hao (2020-03-01). "World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet". Superconductor Science and Technology. 33 (3): 03LT01. Bibcode:2020SuScT..33cLT01L. doi:10.1088/1361-6668/ab714e. ISSN 0953-2048. S2CID 213171620.
- ^ ingevoerd, Geen OWMS velden. "HFML sets world record with a new 38 tesla magnet". Radboud Universiteit.
- ^ "World's strongest steady magnetic field generated in China". New Atlas. 2022-08-16. Retrieved 2022-08-22.
- ^ "Mag Lab Press Release: World's Most Powerful Magnet Tested Ushers in New Era for Steady High Field Research (December 17, 1999)". legacywww.magnet.fsu.edu. Retrieved 2022-08-22.
- ^ Laboratory, National High Magnetic Field. "With mini magnet, National MagLab creates world-record magnetic field - MagLab". nationalmaglab.org. Archived from the original on 2023-06-10. Retrieved 2023-12-28.
- ^ Laboratory, Los Alamos National. "Physical Sciences | Organizations". Los Alamos National Laboratory. Retrieved 2023-12-29.
- ^ Nakamura, D.; Ikeda, A.; Sawabe, H.; Matsuda, Y. H.; Takeyama, S. (2018). "Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression". Review of Scientific Instruments. 89 (9): 095106. Bibcode:2018RScI...89i5106N. doi:10.1063/1.5044557. PMID 30278742. S2CID 52908507.
- ^ Bykov, A.I.; Dolotenko, M.I.; Kolokolchikov, N.P.; Selemir, V.D.; Tatsenko, O.M. (2001). "VNIIEF achievements on ultra-high magnetic fields generation". Physica B: Condensed Matter. 294–295: 574–578. Bibcode:2001PhyB..294..574B. doi:10.1016/S0921-4526(00)00723-7.
- ^ Herman, Frank (15 December 1963). "Relativistic Corrections to the Band Structure of Tetrahedrally Bonded Semiconductors". Physical Review Letters. 11 (541): 541–545. Bibcode:1963PhRvL..11..541H. doi:10.1103/PhysRevLett.11.541.
- ^ Reisenegger, A. (2003). "Origin and Evolution of Neutron Star Magnetic Fields". arXiv:astro-ph/0307133.
- ^ Kaspi, Victoria M.; Beloborodov, Andrei M. (2017). "Magnetars". Annual Review of Astronomy and Astrophysics. 55 (1): 261–301. arXiv:1703.00068. Bibcode:2017ARA&A..55..261K. doi:10.1146/annurev-astro-081915-023329.
- ^ Kong, Ling-Da; Zhang, Shu; Zhang, Shuang-Nan; Ji, Long; Doroshenko, Victor; Santangelo, Andrea; Chen, Yu-Peng; Lu, Fang-Jun; Ge, Ming-Yu; Wang, Peng-Ju; Tao, Lian; Qu, Jin-Lu; Li, Ti-Pei; Liu, Cong-Zhan; Liao, Jin-Yuan (2022-07-01). "Insight-HXMT Discovery of the Highest-energy CRSF from the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124". The Astrophysical Journal Letters. 933 (1): L3. arXiv:2206.04283. Bibcode:2022ApJ...933L...3K. doi:10.3847/2041-8213/ac7711. ISSN 2041-8205.
- ^ "Astronomers measure strongest magnetic field ever detected". New Atlas. 2022-07-15. Retrieved 2022-08-22.
- ^ Tuchin, Kirill (2013). "Particle production in strong electromagnetic fields in relativistic heavy-ion collisions". Adv. High Energy Phys. 2013: 490495. arXiv:1301.0099. doi:10.1155/2013/490495. S2CID 4877952.
- ^ Bzdak, Adam; Skokov, Vladimir (29 March 2012). "Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions". Physics Letters B. 710 (1): 171–174. arXiv:1111.1949. Bibcode:2012PhLB..710..171B. doi:10.1016/j.physletb.2012.02.065. S2CID 118462584.