File:Wakes near the period 1 continent in the Mandelbrot set.png
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,048 × 2,048 pixels | 4,096 × 4,096 pixels.
Original file (4,096 × 4,096 pixels, file size: 1.54 MB, MIME type: image/png)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Contents
Summary
DescriptionWakes near the period 1 continent in the Mandelbrot set.png |
English: Wakes near the period 1 continent in the Mandelbrot set. Boundary of the Mandelbrot set rendered with distance estimation (exterior and interior). Labelled with periods (blue), internal angles and rays (green) and external angles and rays (red). |
Date | |
Source | Own work |
Author | Claude Heiland-Allen |
Other versions |
Summary
This image is made with c code, see : http://code.mathr.co.uk/mandelbrot-graphics/blob/HEAD:/c/bin/m-subwake-diagram-a.c
Dependencies :
- http://code.mathr.co.uk/mandelbrot-graphics
- http://code.mathr.co.uk/mandelbrot-numerics
- http://code.mathr.co.uk/mandelbrot-symbolics
- https://cairographics.org/
C src code
/*
http://code.mathr.co.uk/mandelbrot-graphics/blob/HEAD:/c/bin/m-subwake-diagram-a.c
by Claude Heiland-Allen
*/
#include <mandelbrot-graphics.h>
#include <mandelbrot-numerics.h>
#include <mandelbrot-symbolics.h>
#include <cairo.h>
const double twopi = 6.283185307179586;
void draw_label(m_image *image, m_d_transform *transform, double _Complex c0, const char *text, double pt, m_pixel_t colour) {
double _Complex c = c0;
double _Complex dc = 1;
m_d_transform_reverse(transform, &c, &dc);
cairo_surface_t *surface = m_image_surface(image);
cairo_t *cr = cairo_create(surface);
cairo_select_font_face(cr, "LMSans10", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_font_size(cr, pt);
cairo_text_extents_t te;
cairo_text_extents(cr, text, &te);
cairo_move_to(cr, creal(c) - te.x_bearing - te.width / 2, cimag(c) - te.y_bearing - te.height / 2);
cairo_text_path(cr, text);
cairo_set_source_rgba(cr, m_pixel_red(colour), m_pixel_green(colour), m_pixel_blue(colour), m_pixel_alpha(colour));
cairo_fill(cr);
cairo_destroy(cr);
}
void draw_internal_ray(m_image *image, m_d_transform *transform, int period, double _Complex nucleus, const char *angle, double pt, m_pixel_t colour) {
int steps = 128;
mpq_t theta;
mpq_init(theta);
mpq_set_str(theta, angle, 10);
mpq_canonicalize(theta);
double a = twopi * mpq_get_d(theta);
mpq_clear(theta);
double _Complex interior = cos(a) + I * sin(a);
double _Complex cl = 0, cl2 = 0;
double _Complex c = nucleus;
double _Complex z = c;
cairo_surface_t *surface = m_image_surface(image);
cairo_t *cr = cairo_create(surface);
cairo_set_source_rgba(cr, m_pixel_red(colour), m_pixel_green(colour), m_pixel_blue(colour), m_pixel_alpha(colour));
for (int i = 0; i < steps; ++i) {
if (2 * i == steps) {
cl = c;
}
if (2 * i == steps + 2) {
cl2 = c;
}
double radius = (i + 0.5) / steps;
m_d_interior(&z, &c, z, c, radius * interior, period, 64);
double _Complex pc = c;
double _Complex pdc = 1;
m_d_transform_reverse(transform, &pc, &pdc);
if (i == 0) {
cairo_move_to(cr, creal(pc), cimag(pc));
} else {
cairo_line_to(cr, creal(pc), cimag(pc));
}
}
cairo_stroke(cr);
if (a != 0) {
double t = carg(cl2 - cl);
cairo_save(cr);
double _Complex dcl = 1;
m_d_transform_reverse(transform, &cl, &dcl);
cairo_translate(cr, creal(cl), cimag(cl));
cairo_rotate(cr, -t);
cairo_translate(cr, 0, -pt/3);
cairo_select_font_face(cr, "LMSans10", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_font_size(cr, pt);
cairo_text_path(cr, angle);
cairo_fill(cr);
cairo_restore(cr);
}
cairo_destroy(cr);
}
void draw_external_ray(m_image *image, m_d_transform *transform, const char *angle, m_pixel_t colour, double dx, double dy) {
int maxiters = 1024;
double r = sqrt(2);
m_binangle btheta;
m_binangle_init(&btheta);
m_binangle_from_string(&btheta, angle);
mpq_t qtheta;
mpq_init(qtheta);
m_binangle_to_rational(qtheta, &btheta);
m_binangle_clear(&btheta);
m_d_exray_in *ray = m_d_exray_in_new(qtheta, 8);
mpq_clear(qtheta);
cairo_surface_t *surface = m_image_surface(image);
cairo_t *cr = cairo_create(surface);
cairo_set_source_rgba(cr, m_pixel_red(colour), m_pixel_green(colour), m_pixel_blue(colour), m_pixel_alpha(colour));
bool first = true;
for (int i = 0; i < maxiters; ++i) {
if (m_failed == m_d_exray_in_step(ray, 64)) {
break;
}
double _Complex c = m_d_exray_in_get(ray);
if (cabs(c + 0.75) > r) {
continue;
}
double t = carg(c + 0.75);
double _Complex dc = 1;
m_d_transform_reverse(transform, &c, &dc);
if (first) {
cairo_save(cr);
cairo_translate(cr, creal(c) + dx, cimag(c) + dy);
cairo_rotate(cr, -t);
cairo_select_font_face(cr, "LMMono10", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_font_size(cr, 48);
cairo_text_path(cr, angle);
cairo_fill(cr);
cairo_restore(cr);
cairo_move_to(cr, creal(c) + dx, cimag(c) + dy);
first = false;
} else {
cairo_line_to(cr, creal(c), cimag(c));
}
}
cairo_stroke(cr);
cairo_destroy(cr);
}
int main(int argc, char **argv) {
(void) argc;
(void) argv;
int w = 4096;
int h = 4096;
complex double c = -0.75;
double r = 1.75;
double er = 600;
int maxiters = 8192;
const char *filename = "subwake-diagram-a.png";
m_pixel_t red = m_pixel_rgba(1, 0, 0, 1);
m_pixel_t green = m_pixel_rgba(0, 0.5, 0, 1);
m_pixel_t blue = m_pixel_rgba(0, 0, 1, 1);
m_pixel_t black = m_pixel_rgba(0, 0, 0, 1);
m_pixel_t white = m_pixel_rgba(1, 1, 1, 1);
int retval = 1;
m_image *image = m_image_new(w, h);
if (image) {
m_d_transform *transform = m_d_transform_rectangular(w, h, c, r);
if (transform) {
m_d_colour_t *colour = m_d_colour_minimal(white, black, white);
if (colour) {
m_d_render_scanline(image, transform, er, maxiters, colour);
double _Complex c3, c4a, c4b, c5, c3c2, c2c3;
m_d_nucleus(&c3, 0 + I * 1, 3, 64);
m_d_nucleus(&c4a, 0.25 + 0.5 * I, 4, 64);
m_d_nucleus(&c4b, 0.25 - 0.5 * I, 4, 64);
m_d_nucleus(&c5, 0.3 + 0.3 * I, 5, 64);
m_d_nucleus(&c3c2, c3 + I * 0.1, 6, 64);
m_d_nucleus(&c2c3, -1 - 0.25 + 0.25 * I, 6, 64);
double pt = 48;
draw_internal_ray(image, transform, 1, 0, "1/2", pt, green);
draw_internal_ray(image, transform, 1, 0, "1/3", pt, green);
draw_internal_ray(image, transform, 1, 0, "1/4", pt, green);
draw_internal_ray(image, transform, 1, 0, "1/5", pt, green);
draw_internal_ray(image, transform, 1, 0, "3/4", pt, green);
draw_internal_ray(image, transform, 2, -1, "0/1", pt, green);
draw_internal_ray(image, transform, 2, -1, "1/3", pt, green);
draw_internal_ray(image, transform, 3, c3, "0/1", 0.7 * pt, green);
draw_internal_ray(image, transform, 3, c3, "1/2", 0.7 * pt, green);
draw_internal_ray(image, transform, 3, c3, "1/3", 0.7 * pt, green);
draw_internal_ray(image, transform, 3, c3, "1/4", 0.7 * pt, green);
draw_internal_ray(image, transform, 3, c3, "3/4", 0.7 * pt, green);
draw_external_ray(image, transform, ".(01)", red, 0, 0);
draw_external_ray(image, transform, ".(10)", red, 0, 0);
draw_external_ray(image, transform, ".(001)", red, 32, 32);
draw_external_ray(image, transform, ".(010)", red, -48, 0);
draw_external_ray(image, transform, ".(011)", red, 0, 0);
draw_external_ray(image, transform, ".(100)", red, 0, 0);
draw_external_ray(image, transform, ".(0001)", red, 0, -16);
draw_external_ray(image, transform, ".(0010)", red, 16, 16);
draw_external_ray(image, transform, ".(1101)", red, 0, 0);
draw_external_ray(image, transform, ".(1110)", red, 0, 0);
draw_external_ray(image, transform, ".(00001)", red, 0, 0);
draw_external_ray(image, transform, ".(00010)", red, 0, 16);
draw_external_ray(image, transform, ".(001010)", red, -32, -32);
draw_external_ray(image, transform, ".(010001)", red, 0, 0);
draw_external_ray(image, transform, ".(010110)", red, 0, 0);
draw_external_ray(image, transform, ".(011001)", red, 0, 0);
draw_external_ray(image, transform, ".(001001010)", red, -48, -48);
draw_external_ray(image, transform, ".(001010001)", red, 0, 0);
draw_external_ray(image, transform, ".(001001001010)", red, 0, 0);
draw_external_ray(image, transform, ".(001001010001)", red, -16, -16);
draw_external_ray(image, transform, ".(010010001010)", red, 32, 0);
draw_external_ray(image, transform, ".(010010010001)", red, 0, 0);
draw_label(image, transform, 0, "1", 6 * pt, blue);
draw_label(image, transform, -1, "2", 3 * pt, blue);
draw_label(image, transform, c3, "3", 2 * pt, blue);
draw_label(image, transform, c4a, "4", 1.5 * pt, blue);
draw_label(image, transform, c4b, "4", 1.5 * pt, blue);
draw_label(image, transform, c5, "5", pt, blue);
draw_label(image, transform, c2c3, "6", pt, blue);
draw_label(image, transform, c3c2, "6", pt, blue);
m_image_save_png(image, filename);
retval = 0;
m_d_colour_delete(colour);
}
m_d_transform_delete(transform);
}
m_image_delete(image);
}
return retval;
}
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Items portrayed in this file
depicts
some value
17 February 2016
image/png
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 14:21, 17 February 2016 | 4,096 × 4,096 (1.54 MB) | CM | User created page with UploadWizard |
File usage
The following 2 pages use this file:
Global file usage
The following other wikis use this file:
- Usage on en.wikibooks.org
- Fractals/Iterations in the complex plane/Mandelbrot set interior
- Fractals/Iterations in the complex plane/def cqp
- Fractals/Mathematics/Newton method
- Fractals/mandelbrot-numerics
- Fractals/Iterations in the complex plane/wake
- Fractals/Iterations in the complex plane/subwake
- Fractals/mandelbrot-graphics
- Fractals/curves
- Usage on es.wikipedia.org
- Usage on id.wikipedia.org
- Usage on ml.wikipedia.org