Jump to content

File:Sine iterations.svg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (SVG file, nominally 720 × 540 pixels, file size: 37 KB)

Summary

Description
English: Iterates of the sine function (blue), in the first half-period.     Half-iterate (orange), i.e., the sine's functional square root; the functional square root of that, the quarter-iterate (black) above it, up until the 1/64 iterate; and six integral iterates below it, starting with the second iterate (red). The green envelope triangle represents the limiting null iterate, the sawtooth function serving as the starting point leading to the sine function. The dashed black function is iterate -1, or the inverse of sine (arc sine).

Python source code:

import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate

x = np.linspace(0, np.pi, 10000)

def double_iter(a):
    d = np.array(a)
    interpolated = interpolate.interp1d(x, a, kind="linear")
    
    for i in range(len(a)):
        d[i] = interpolated(min(x[-1], a[i]))
        
    return d

def improve(candidate, f):
    improved = np.empty_like(candidate)
    
    for i in range(len(f)):
        naive_newval = np.argmin(np.abs(candidate[:len(f)/2]-f[i])) * np.pi/len(f)
        improved[i] = candidate[i] + 0.1*(naive_newval - candidate[i])

    return improved

def half_iter(f):
    half = np.array(f)
    mean_error = float("inf")

    while mean_error > 1e-4:
        half = improve(half, f)
        mean_error = np.mean(np.abs(double_iter(half)-f))
        print mean_error 

    return half


iter_1 = np.sin(x)
iter_minus1 = np.arcsin(x) 

iter_0 = np.concatenate((x[0:len(x)/2], np.flipud(x[0:len(x)/2])), axis=1)
iter_2 = double_iter(iter_1)
iter_4 = double_iter(iter_2)
iter_8 = double_iter(iter_4)
iter_16 = double_iter(iter_8)
iter_32 = double_iter(iter_16)
iter_64 = double_iter(iter_32)

iter_1_2 = half_iter(iter_1)
iter_1_4 = half_iter(iter_1_2)
iter_1_8 = half_iter(iter_1_4)
iter_1_16 = half_iter(iter_1_8)
iter_1_32 = half_iter(iter_1_16)
iter_1_64 = half_iter(iter_1_32)

n = 10
plotx = x[::n]

plt.plot(plotx, iter_1[::n],"b",linewidth=2)
plt.plot(plotx, iter_2[::n],"r")
plt.plot(plotx, iter_4[::n],"k")
plt.plot(plotx, iter_8[::n],"k")
plt.plot(plotx, iter_16[::n],"k")
plt.plot(plotx, iter_32[::n],"k")
plt.plot(plotx, iter_64[::n],"k")

plt.plot(plotx, iter_1_2[::n],"orange")
plt.plot(plotx, iter_1_4[::n],"k")
plt.plot(plotx, iter_1_8[::n],"k")
plt.plot(plotx, iter_1_16[::n],"k")
plt.plot(plotx, iter_1_32[::n],"k")
plt.plot(plotx, iter_1_64[::n],"k")

plt.plot(plotx, iter_0[::n],"g")
plt.plot(x, iter_minus1,"k--")

plt.ylim([0,np.pi/2])
plt.xlim([0,np.pi])

plt.tight_layout(pad=0.15)
plt.savefig("Sine_iterations.svg")
Date
Source Own work
Author Qorilla

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

3 April 2015

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current01:49, 3 April 2015Thumbnail for version as of 01:49, 3 April 2015720 × 540 (37 KB)QorillaUser created page with UploadWizard

The following 2 pages use this file:

Global file usage

The following other wikis use this file:

Metadata