DescriptionParabola construction given five points.gif
English: Two parabolas, intersecting in four points may be distinct. But if they intersect in five points, then they coincide, so a parabola, like ellipse and hyperbola, is defined by five points. Here, we construct parabola, given five points. For the description of the method see p. 83 of the following book: A.P. Veselov, E.V.Troitsky. Lectures in Analytical Geometry. 2nd ed., in Russian. Lan', 2003. See also a description and an applet for the ellipse here.
Русский: Две параболы, пересекающиеся в четырех точках, могут быть различны, но если две параболы пересекаются в пяти точках, они совпадают, то есть, парабола,как и эллипс и гипербола, определяется пятью точками. Здесь представлено построение параболы по пяти данным точкам. См. описание метода на с.83 книги А.П.Веселов, Е.В.Троицкий, Лекции по аналитической геометрии, 2-е изд., Лань, 2003. См. также описание и апплет для эллипса здесь.
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.