File:Mach-Zehnder photons animation.gif
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Mach-Zehnder_photons_animation.gif (300 × 220 pixels, file size: 110 KB, MIME type: image/gif, looped, 100 frames, 7.0 s)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionMach-Zehnder photons animation.gif |
English: Animation of photons in a Mach–Zehnder interferometer. In the empty interferometer each photon interferes with itself. If a detector is placed in the interferometer, the wavefunction will collapse so that the photon is either detected directly or it will move on and split at the second beam splitter without interference. |
Date | |
Source | Own work |
Author | user:Geek3 |
This plot was created with Matplotlib by n.
Source Code
The image is created by the following python source-code. Requirements:
- python
- Matplotlib plotting library
Python Matplotlib source code |
---|
#!/usr/bin/python
# -*- coding: utf8 -*-
from math import *
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Circle, Wedge
from matplotlib import animation
import numpy as np
# settings
fname = 'Mach-Zehnder_photons_animation'
width, height = 300, 220
nframes = 100
nphotons = 12
fps = 15
x0 = 100.5
x1 = 218.5
y0 = 200.5
y1 = 80.5
lx, lw, lh = 5, 46, 21 # laser
dtect = 62.5
t1, t2, tmove = 0.25, 0.9, 0.025
ymove = 24
rp = 2. # photon radius
cp1 = '#ff0000' # photon color
cp2 = '#ffaaaa' # splitphoton color
##
xstart = lx + lw / 2.
dx = x1 - x0
dy = y1 - y0
l = (x0 - xstart) + abs(dx) + abs(dy) + dtect + 2.*rp
xdet0 = (x0 + x1) / 2
fly_frac = 0.7
v = l / fly_frac
tdet0 = (xdet0 + 2.*rp - xstart) / v
tdet12 = l / v
# introduce artificial antibunching for illustration purpose
ptimes = (np.random.random() + np.sort(np.random.random(3*nphotons))[::3]) % 1
photons = [{} for i in range(nphotons)]
for i, p in enumerate(photons):
p['t0'] = ptimes[i]
if t1 <= (p['t0'] + tdet0) % 1 and (p['t0'] + tdet0) % 1 <= t2:
# photon sees first detector
if np.random.randint(2) == 0:
# photon hits extra detector
p['arm'] = 'none'
p['det'] = 0
else:
# photon escapes first detector
p['arm'] = 'lower'
# => random detection at second beam splitter
if np.random.randint(2) == 0:
p['det'] = 1
else:
p['det'] = 2
else:
# photon sees standard Mach-Zehnder interferometer
p['arm'] = 'both'
p['det'] = 1
if p['det'] == 0:
p['tdet'] = (p['t0'] + tdet0) % 1
else:
p['tdet'] = (p['t0'] + tdet12) % 1
p['click_frame'] = int(round(p['tdet'] * nframes)) % nframes
plt.close('all')
mpl.rc('path', snap=False)
def animate(nframe):
# prepare a clean and image-filling canvas for each frame
plt.clf()
fig.gca().set_position((0, 0, 1, 1))
plt.xlim(0, width)
plt.ylim(0, height)
plt.axis('off')
t = float(nframe) / nframes
# photons
for p in photons:
s0 = v * ((t - p['t0']) % 1)
if s0 > l:
continue
s = s0 + start - x0
if s <= 0:
# from laser to first beam splitter
x, y = x0 + s, y0
fig.gca().add_patch(Circle((x, y), rp, color=cp1))
elif s <= abs(dx) + abs(dy):
# in the interferometer
if s < abs(dx):
xu, yu = x0 + copysign(s, dx), y0
else:
xu, yu = x1, y0 + copysign(s - abs(dx), dy)
if s < abs(dy):
xd, yd = x0, y0 + copysign(s, dy)
else:
xd, yd = x0 + copysign(s - abs(dy), dx), y1
if s < xdet0 - x0 or p['arm'] == 'both':
fig.gca().add_patch(Circle((xu, yu), rp, color=cp2))
fig.gca().add_patch(Circle((xd, yd), rp, color=cp2))
elif p['arm'] == 'lower':
fig.gca().add_patch(Circle((xd, yd), rp, color=cp1))
else:
# after the interferometer
x, y = x1 + (s - abs(dx) - abs(dy)), y1
if p['arm'] == 'both':
fig.gca().add_patch(Circle((x, y), rp, color=cp1))
elif p['arm'] == 'lower':
fig.gca().add_patch(Circle((x, y), rp, color=cp2))
x, y = x1, y1 - (s - abs(dx) - abs(dy))
fig.gca().add_patch(Circle((x, y), rp, color=cp2))
# laser
fig.gca().add_patch(
Polygon([[lx, y0-lh/2.], [lx, y0+lh/2.],
[lx+lw, y0+lh/2.], [lx+lw, y0-lh/2.]],
closed=True, facecolor='#cccccc', edgecolor='black'))
plt.text(lx+lw/2., y0-2, 'laser', fontsize=12,
horizontalalignment='center', verticalalignment='center')
# beam splitters
b = 12
fig.gca().add_patch(
Polygon([[x0-b, y0+b], [x0+b, y0+b], [x0+b, y0-b],
[x0-b, y0-b], [x0-b, y0+b], [x0+b, y0-b]],
closed=True, facecolor='#88aadd', edgecolor='black',
linewidth=2, alpha=0.4))
fig.gca().add_patch(
Polygon([[x1-b, y1+b], [x1+b, y1+b], [x1+b, y1-b],
[x1-b, y1-b], [x1-b, y1+b], [x1+b, y1-b]],
closed=True, facecolor='#88aadd', edgecolor='black',
linewidth=2, alpha=0.4))
# mirrors
m, mw = 12, 4
fig.gca().add_patch(
Polygon([[x1-m+mw/2., y0+m+mw/2.], [x1+m+mw/2., y0-m+mw/2.]],
closed=False, edgecolor='#555555', linewidth=mw))
fig.gca().add_patch(
Polygon([[x0-m-mw/2., y1+m-mw/2.], [x0+m-mw/2., y1-m-mw/2.]],
closed=False, edgecolor='#555555', linewidth=mw))
# detectors
c_off = '#cccccc'
c_on = '#cc0000'
c0 = c1 = c2 = c_off
for p in photons:
if p['click_frame'] == nframe:
if p['det'] == 0: c0 = c_on
if p['det'] == 1: c1 = c_on
if p['det'] == 2: c2 = c_on
if t1 <= t and t <= t2:
yd = y0
else:
yd = y0 - min((t1-t)%1, tmove, (t-t2)%1) * ymove / float(tmove)
fig.gca().add_patch(mpl.patches.Wedge((xdet0, yd), b, 270, 90, fc=c0))
fig.gca().add_patch(mpl.patches.Wedge((x1 + dtect, y1), b, 270, 90, fc=c1))
fig.gca().add_patch(mpl.patches.Wedge((x1, y1 - dtect), b, 180, 0, fc=c2))
fig = plt.figure(figsize=(width/100., height/100.))
anim = animation.FuncAnimation(fig, animate, frames=nframes)
anim.save(fname + '.gif', writer='imagemagick', fps=fps)
|
Postprocessing with gifsicle:
gifsicle -k 64 --background="#ffffff" -O3 --careful -i < Mach-Zehnder_photons_animation.gif > Mach-Zehnder_photons_animation_.gif
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may select the license of your choice.
Items portrayed in this file
depicts
22 August 2015
image/gif
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 10:30, 22 August 2015 | 300 × 220 (110 KB) | Geek3 | {{Information |Description ={{en|1=Animation of photons in a en:Mach–Zehnder interferometer. In the empty interferometer each photon interferes with itself. If a detector is placed in the... |
File usage
The following 3 pages use this file:
Global file usage
The following other wikis use this file:
- Usage on af.wikipedia.org
- Usage on es.wikipedia.org
- Usage on eu.wikipedia.org
- Usage on pt.wikipedia.org
- Usage on ru.wikipedia.org
- Usage on uk.wikipedia.org
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
GIF file comment | https://commons.wikimedia.org/wiki/File:Mach-Zehnder_photons_animation.gif |
---|