Here the horizontal axis represents the location along a bar of metal and the graph records the temperature at that location. It begins with an initial temperature which is hot at one side and cool at the other, and then shows how the temperature of the bar approaches an equilibrium. It is assumed that no heat is lost from the bar and that there are no heat sources.
This demonstrates two key properties of the heat equation: approaching an equilibrium, and the maximum principle. The maximum principle says that the temperature will always have a maximum either earlier in time or at the ends of the bar.
Description:
Graphical representation of the solution to the heat equation for an "infinite slab" of width 1 given by:
where k = .061644 subject to the boundary conditions:
and with the initial heat distribution given by:
In this case, the left face (x=0) and the right face (x=1) are perfectly insulated. This image shows how the heat redistributes, flowing from the warmer left edge to the cooler right edge, then equalizing to a constant temperature throughout. This temperature happens to be the average value of cos(2x) over [0,1], as one might expect.
I, the copyright holder of this work, hereby publish it under the following licenses:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
This licensing tag was added to this file as part of the GFDL licensing update.http://creativecommons.org/licenses/by-sa/3.0/CC BY-SA 3.0Creative Commons Attribution-Share Alike 3.0truetrue
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
== Summary == Graphical representation of the solution to the heat equation for a "slab" of width 1 given by: :<math>\ u_t = ku_{xx}</math> subject to the boundary conditions: :<math>u_x(0,t) = 0,\ \ u_x(1,t)=0</math> and with the initial heat distribu