Jump to content

File:H2OrbitalsAnimation.gif

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

H2OrbitalsAnimation.gif (300 × 204 pixels, file size: 411 KB, MIME type: image/gif, looped, 91 frames)

Summary

Description
English: Electron wavefunctions for the 1s orbital of the hydrogen atom (left and right) and the corresponding bonding (bottom) and antibonding (top) orbitals of the dihydrogen molecule. The real part of the wavefunction is the blue curve, the imaginary part is the red curve. The red dots mark the locations of the protons. The electron wavefunction oscillates according to the Schrödinger equation, and the orbitals are standing waves. The standing wave frequency is proportional to the energy of the orbital. Hydrogen is really a 3D system, but this is a 1D slice. These are schematic plots: I did not bother to solve the Schrödinger equation quantitatively. The plots are arranged like a molecular orbital diagram.
Date
Source Own work
Author Sbyrnes321
 
This diagram was created with Mathematica by n.
(*Source code written in Mathematica 6.0 by Steve Byrnes, March 2011. This source code is public domain.*)
(*Shows schematic electron wavefunctions for 1s orbital of hydrogen atom, and 1s bonding and
antibonding orbitals of hydrogen molecule. Plotted as a 1D slice of a 3D system.
All graphs are schematic: I'm not actually solving the Schrodinger equation, but hopefully it looks like I did. *)

ClearAll["Global`*"]

(***Oscillation frequencies, in units of oscillations per cycle of the animated gif***)

sfreq = 4;
bondfreq = 3;
antibondfreq = 5;

(***Wavefunction normalization coefficients***)

scoef = 0.893;
bondcoef = 0.618;
antibondcoef = 0.646;

(***Define wavefunctions***)

s[x_, t_] := scoef * Exp[-(x - 1.25)^2]*Exp[-2*Pi*I*sfreq*t];
bond[x_, t_] := bondcoef * (Exp[-x^2] + Exp[-(x - 2.5)^2]) * Exp[-2*Pi*I*bondfreq*t];
antibond[x_, t_] := antibondcoef * (Exp[-x^2] - Exp[-(x - 2.5)^2]) * Exp[-2*Pi*I*antibondfreq*t];

(***Make individual graphs***)

SetOptions[Plot, {Ticks -> None, PlotStyle -> {Directive[Thick, Blue], Directive[Thick, Pink]}, 
   Axes -> {True, False}, PlotRange -> {{-2.5, 5}, {-1, 1}}, 
   AspectRatio -> 1.1}, Frame -> True, FrameTicks -> None];
SetOptions[ListPlot, {Ticks -> None, PlotStyle -> Directive[Red, AbsolutePointSize[10]]}, Axes -> {True, False}];
OneProton = ListPlot[{{1.25, 0}}];
TwoProtons = ListPlot[{{0, 0}, {2.5, 0}}];
SWaves[t_] := Plot[{Re[s[x, t]], Im[s[x, t]]}, {x, -2.5, 5}];
BondWaves[t_] := Plot[{Re[bond[x, t]], Im[bond[x, t]]}, {x, -2.5, 5}];
AntibondWaves[t_] := Plot[{Re[antibond[x, t]], Im[antibond[x, t]]}, {x, -2.5, 5}];
SPlot[t_] := Show[SWaves[t], OneProton];
BondPlot[t_] := Show[BondWaves[t], TwoProtons];
AntibondPlot[t_] := Show[AntibondWaves[t], TwoProtons];

(***Draw all graphs together, arranged in the shape of a molecular orbital diagram***)

TotalPlot[t_] := 
 Graphics[{White, Rectangle[{0, 0}, {1.5, 1}], 
   Inset[SPlot[t], ImageScaled[{0, 0.5}], ImageScaled[{0, 0.5}], .45],
   Inset[SPlot[t], ImageScaled[{1, 0.5}], ImageScaled[{1, 0.5}], .45], 
   Inset[BondPlot[t], ImageScaled[{0.5, 0}], ImageScaled[{0.5, 0}], .45],
   Inset[AntibondPlot[t], ImageScaled[{0.5, 1}], ImageScaled[{0.5, 1}], .45]}, ImageSize -> 300]

(***Export animation***)
   
output = Table[TotalPlot[t], {t, 0, 90/91, 1/91}];
SetDirectory["C:\\Users\\Steve\\Desktop"]
Export["test.gif", output]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

28 March 2011

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current08:35, 28 March 2011Thumbnail for version as of 08:35, 28 March 2011300 × 204 (411 KB)Sbyrnes321Fixed the sign of the complex phase oscillation
08:28, 28 March 2011Thumbnail for version as of 08:28, 28 March 2011300 × 204 (411 KB)Sbyrnes321{{Information |Description ={{en|1=Electron wavefunctions for the 1s orbital of the hydrogen atom (left and right) and the corresponding bonding (bottom) and antibonding (top) orbitals of the dihydrogen molecule. The real part of the wavefunction is th

The following 3 pages use this file:

Global file usage

The following other wikis use this file: