Jump to content

File:Generation of OAM beams using SLM.gif

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Generation_of_OAM_beams_using_SLM.gif (503 × 428 pixels, file size: 5.6 MB, MIME type: image/gif, looped, 200 frames, 50 s)

Summary

Description
English: A light beam with a given orbital angular momentum (OAM) can be generated by letting a standard Gaussian beam impinge on a display of a spatial light modulator (SLM). The phase of the reflected beam is a sum of the original phase and the phase projected onto the SLM. If the phase profile on SLM is flat, the SLM works effectively as a mirror. If the phase has a helical profile, the resulting beam is a Laguerre-Gaussian (LG) beam with a well-defined OAM. The sign as well as the value of OAM can be easily changed by projecting different patterns on the SLM. In real applications, there is a non-negligible admixture in the reflected beam in the form of a Gaussian beam. One can get rid of it by superposing the helical phase on the SLM with a diffraction grating. The resulting pattern, the fork hologram, reflects the LG beam into a different direction than the Gaussian admixture.
Čeština: Světelný paprsek s daným orbitálním momentem hybnosti (OAM) může být generován tak, že se standardní Gaussovský svazek nechá dopadat na displej prostorového modulátoru světla (SLM). Fáze odraženého paprsku je součtem původní fáze a fáze promítnuté na SLM. Je-li fázový profil na SLM plochý, funguje SLM v podstatě jako zrcadlo. Pokud je fáze šroubovicovitá, je odražený paprsek Laguerrův-Gaussův (LG) svazek s dobře definovaným OAM. Znaménko i hodnotu OAM lze snadno změnit promítnutím jiného fázového vzorku na SLM. V reálných aplikacích obsahuje odražený svazek nezanedbatelnou příměs v podobě Gaussovského svazku. Tuto příměs lze odstranit tak, že se na SLM promítne vzorek doplněný o difrakční mřížku. Výsledný vzorek, vidlicovitý hologram, odráží LG svazek do jiného směru než Gaussovskou příměs.
Date
Source Own work
Author JozumBjada

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Source code

This animation was created using Wolfram language 12.0.0 for Microsoft Windows (64-bit) (April 6, 2019). The source code follows (formatted as a .wl package file).

(* ::Package:: *)

(* ::Title:: *)
(*OAM beams created by SLM*)


(* ::Subtitle:: *)
(*Animation demonstrating the generation of orbital angular momentum (OAM) beams using spatial light modulator (SLM)*)


(* ::Chapter::Closed:: *)
(*Auxiliary routines and constants*)


(* ::Input::Initialization:: *)
{pt1,pt2,pt3,pt4}={{-1,-1,0},{0,0,0},{.5,-1.5,0},1.12{1,-1,0}};
{rad,speed,finalStageIdx}={0.2,0.1,16};
arrowFun[pts_,col_:Orange]:={Thickness[0.005],Arrowheads[0.03],col,Arrow[BezierCurve[pts]]}
fadeFun[gr_,t_]:=gr/.{col_:>Blend[{col,White},t]/;ColorQ[col],img_Image:>Blend[{RemoveAlphaChannel[img,White],ConstantImage[White,ImageDimensions[img]]},t]}


(* ::Chapter:: *)
(*3D elements*)


(* ::Section::Closed:: *)
(*SLM*)


(* ::Input::Initialization:: *)
frame3D[w_,h_,d_,scale_]:=Module[{pts,coords,reg},
pts={##,-d/2}&@@@({{-w,-h},{w,-h},{w,h},{-w,h}}/2);
pts=Join[pts,TranslationTransform[{0,0,d}][pts],ScalingTransform[{scale,scale,1}][pts],TranslationTransform[{0,0,d}]@ScalingTransform[{.8,.8,1}][pts]];coords={{1,2,6,5},{2,3,7,6},{3,4,8,7},{4,1,5,8},{1,2,3,4},{5,6,7,8}};
reg=RegionDifference[Polyhedron[pts,coords],Polyhedron[pts,Map[Plus[#,8]&,coords,{2}]]];
reg
];


(* ::Input::Initialization:: *)
getSLM[tex_,w_:1,h_:.9,d_:.05,scale_:.8]:=Module[{pts},
pts={##,0}&@@@((1+scale)/2{{-w,-h},{w,-h},{w,h},{-w,h}}/2);
Rotate[#,\[Pi]/2,{1,0,0}]&@{Gray,EdgeForm[],frame3D[w,h,d,scale],Texture[Rotate[tex,-\[Pi]/2]],Polygon[pts,VertexTextureCoordinates->RotateRight[{{0,0},{1,0},{1,1},{0,1}}]]}
];


(* ::Section::Closed:: *)
(*Beams*)


(* ::Input::Initialization:: *)
tubeBeamFun[pt_,opacity_:.5,pt2_:pt2]:={CapForm["Square"],Glow[RGBColor[1, 0, 0]],RGBColor[1, 0.5, 0],JoinForm["Miter"],Opacity[opacity],Tube[{pt2,pt},rad]}


(* ::Input::Initialization:: *)
getHelix[k_:1]:=getHelix[k]=Module[{plot,helix,rad=rad},
plot=ParametricPlot3D[Evaluate[Table[{r Cos[2\[Pi]/k t+j 2\[Pi]/k],r Sin[2\[Pi] /k t+j 2\[Pi]/k],t},{j,0,Abs[k]-1}]],{t,0,1},{r,0,1},Mesh->None,PlotStyle->Orange,PlotPoints->If[k==1||k==-1,25,Automatic]];
plot=First[Cases[InputForm[plot],_GraphicsComplex,Infinity,1]];
helix=Scale[Translate[plot,Table[{0,0,0.8+i},{i,7}]],{0.8rad,0.8rad,0.2},{0,0,0}];
helix
]


(* ::Input::Initialization:: *)
helicalWavefrontFun[k_,t_,initpt_,finpt_]:=Module[{wfs,speed=2},
wfs=Rotate[getHelix[k],-Sign[k]speed t,{0,0,1}];
Translate[#,pt2]&@Rotate[wfs,{{0,0,1},finpt-initpt}]
]


(* ::Input::Initialization:: *)
(*disk=ResourceFunction["Disk3D"][{0,0,0},0.8rad,{{1,0,0},{0,0,1}}];*)
disk=BSplineSurface[{{{-0.16,0.,0.},{-0.16,0.,-0.16},{0.,0.,-0.16}},{{-0.16,0.,0.16},{0.0178,0.,0.},{0.16,0.,-0.16}},{{0.,0.,0.16},{0.16,0.,0.16},{0.16,0.,0.}}},SplineKnots->{{0,0,0,1,1,2},{0,0,0,1,1,2}},SplineWeights->{{1,1/Sqrt[2],1},{1/Sqrt[2],1,1/Sqrt[2]},{1,1/Sqrt[2],1}}];


(* ::Input::Initialization:: *)
flatWavefrontFun[t_,initpt_,finpt_,offset_:0,opacity_:.5,lenvec_:1]:=Module[{wfs,len=1.5,step,offsets,wfnum=8},
step=(*len*)1.1/wfnum;
If[lenvec==0,Return[{}]];
offsets=(offset+Mod[speed t+#,len])&/@Range[0,lenvec len,step];
wfs=Translate[disk,{0,#,0}&/@offsets];
{Orange,EdgeForm[Opacity[Rescale[opacity ,{0,.5},{0,1}]0.9,Red]],Opacity[opacity],Translate[#,initpt]&@Rotate[wfs,{{0,1,0},finpt-initpt}]}
]


(* ::Input::Initialization:: *)
ptrot[tloc_]:=RotationTransform[Rescale[tloc,{0,1},{0,-VectorAngle[pt3,pt4]}],{pt3,pt4},pt2][pt4];
flatFrontFun[tglob_,op_:0.8]:=flatWavefrontFun[tglob,pt2,pt4,0.4,op];
beamsFun[k_][tglob_]:={tubeBeamFun[pt4],flatFrontFun[tglob],If[k=!=None,helicalWavefrontFun[k,tglob,pt2,pt4],Nothing]};
beamsFun2[k_][tglob_]:={tubeBeamFun[pt4,.2],tubeBeamFun[pt3],flatWavefrontFun[tglob,pt2,pt4,0.45,.2],helicalWavefrontFun[k,tglob,pt2,pt3]};


(* ::Input::Initialization:: *)
getBeams[stage_,tloc_,tglob_]:=Module[{list,speed=speed,incbeam,incwavefronts},

list={
{tubeBeamFun[pt2+Clip[2tloc-1,{0,1}](pt4-pt2)],flatWavefrontFun[tglob,pt2,pt4,0.4,0.5,Clip[2tloc-1,{0,1}]]},
beamsFun[None][tglob],
beamsFun[1][tglob],
beamsFun[2][tglob],
beamsFun[-2][tglob],
beamsFun[-1][tglob],
beamsFun[None][tglob],
{tubeBeamFun[pt4,.2],tubeBeamFun[ptrot[tloc]],flatWavefrontFun[tglob,pt2,ptrot[tloc],0.35,0.8],flatFrontFun[tglob,0.2]},
{tubeBeamFun[pt4,.2],tubeBeamFun[pt3],flatWavefrontFun[tglob,pt2,pt3,0.35,0.8],flatFrontFun[tglob,0.2]},
beamsFun2[1][tglob],
beamsFun2[1][tglob],
beamsFun2[2][tglob],
beamsFun2[-2][tglob],
beamsFun2[-1][tglob],
beamsFun2[1][tglob],
beamsFun2[1][tglob]
};
incbeam=tubeBeamFun[If[stage==1,pt1+Clip[2tloc,{0,1}](pt2-pt1),pt2],.5,pt1];
incwavefronts=flatWavefrontFun[tglob,pt1,pt2,0,0.5,If[stage==1,Clip[2tloc,{0,1}],1]];
Join[{incbeam,incwavefronts},list[[stage]]]
]


(* ::Chapter:: *)
(*2D elements*)


(* ::Section::Closed:: *)
(*Side slide*)


(* ::Input::Initialization:: *)
slideAsideFun[times_,funs_,def_:{}]:=Module[{aux,x},
aux=MapThread[{#1[Rescale[x,{#2,#3},{0,1}]],x<#3}&,{funs,times,Append[Rest[times],1]}];
With[{p=Piecewise[aux,def]/.x->#},p&]
];


(* ::Input::Initialization:: *)
slidePics[times_,pics_,ipos_]:=Module[{aux,x,funs,u,pos=Identity[ipos],def},

funs=MapThread[Function[{u},{Translate[#,#2+u(#3-#2)]}]&,{pics,pos,Append[Rest[pos],Last[pos]]}];
def=Translate[Last[pics],Last[pos]];
slideAsideFun[times,funs,def]
];


(* ::Input::Initialization:: *)
slidePicsAccum[itimes_,pauses_,ipics_,ipos_]:=Module[{aux,x,funs,u,pos,def,pics=FoldList[Append,ipics],times},

times=Riffle[itimes,itimes+pauses];
pics=Riffle[pics,pics];
pos=Riffle[ipos,ipos];

If[Last[pauses]==0,{times,pics,pos}=Most/@{times,pics,pos}];
slidePics[times,pics,pos]
];


(* ::Input::Initialization:: *)
slideAsideTwo[itimes_,pauses_,tfade1_,tfade2_,k1_,k2_,k3_,finpos_:-1]:=Module[{slideTwo,gr1,grMid,gr2,gr3},

gr1=If[k1===None,{},texFun[texSmoothFun[k1],{0,0}]];
grMid=Text[Style["\[Rule]",40,FontColor->Black],{-finpos/2,0}];
gr2=texFun[texSmoothFun[k2],{-finpos,0}];
gr3=texFun[texSmoothFun[k3],{-finpos,0}];

slideTwo=slidePicsAccum[itimes,pauses,{{Translate[#,{finpos,0}]&@gr2},{grMid,gr3}},{{.25,1.5},{.25,1.5}+{finpos,0}}];

Piecewise[{
{Translate[#,{.25,1.5}+{finpos,0}]&@{fadeFun[{gr1,If[k1===None,{},grMid]},Rescale[#,{0,tfade1},{0,1}]],gr2},#<tfade1},
{texFun[texSmoothFun[k2],{.25,1.5}],#<tfade2},
{slideTwo[Rescale[#,{tfade2,1},{0,1}]],True}
}]&
]


(* ::Section::Closed:: *)
(*Textures*)


(* ::Input::Initialization:: *)
texFun[tex_,pos_,pars___]:={Texture[tex],pars,EdgeForm[],Polygon[TranslationTransform[pos][0.6{{-1,-1},{1,-1},{1,1},{-1,1}}/2],VertexTextureCoordinates->{{0,0},{1,0},{1,1},{0,1}}]}


(* ::Input::Initialization:: *)
getHologram[charge_,grating_:0,disk_:True,colorFun_:GrayLevel]:=getHologram[charge,grating,disk,colorFun]=Module[{slope,lim=2.5,plotPoints=70,imgSize=200},
slope=Rescale[grating,{0,1},{0,12}];
If[charge==0&&grating==0&&Not@disk,
ConstantImage[Gray,{imgSize,imgSize}]
,
DensityPlot[Evaluate[Mod[slope y+Arg[Exp[-I charge ArcTan[-x,y]]],2\[Pi],-\[Pi]]],{y,-lim,lim},{x,-lim,lim},
Exclusions->(#1<=0&&#2==0&),PlotPoints->If[grating>0,2plotPoints,plotPoints],PlotRangePadding->None,
Frame->None,ColorFunction->colorFun,MaxRecursion->Automatic,RegionFunction->If[disk,(#1^2+#2^2<=lim^2&),True],ImageSize->imgSize]
]
];
orangeLevel=Blend[{Orange,Black},#]&;


(* ::Input::Initialization:: *)
slidingHolos=With[{opos={.25,1.5}},
slidePicsAccum[{0,0.5,0.95},{0.02,0.02,0},
{
{texFun[texGratingFun[1],opos]},
{Text[Style["+",40,FontColor->Black],opos+{0.5,0}],texFun[texSmoothFun[1],opos+{1,0}]},
{Text[Style["=",40,FontColor->Black],opos+{1.5,0}],texFun[texSLM[1],opos+{2,0}]}
}
,{{0,0},{-1,0},{-2,0}}]
];


(* ::Input::Initialization:: *)
sumHolo[k_]:=With[{opos={.25,1.5}+{-2,0}},
{
{texFun[texGratingFun[1],opos]},
{Text[Style["+",40,FontColor->Black],opos+{0.5,0}],texFun[texSmoothFun[k],opos+{1,0}]},
{Text[Style["=",40,FontColor->Black],opos+{1.5,0}],texFun[texSLM[k],opos+{2,0}]}
}
];


(* ::Input::Initialization:: *)
texSLM[k_]:=texSLM[k]=Rasterize[getHologram[k,1,False],Background->None]
texGratingFun[n_]:=texGratingFun[n]=Rasterize[getHologram[0,n,False],Background->None]
texSmoothFun[k_]:=texSmoothFun[k]=Image@getHologram[k,0,False];
texOrange[k_]:=texOrange[k]=Rasterize[getHologram[k,0,True,Blend[{Orange,Black},#]&],Background->None]


(* ::Input::Initialization:: *)
texOrangePlusGauss[k_]:=texOrangePlusGauss[k]=Rasterize[Graphics[{
Inset[texOrange[0],ImageScaled[{.6,.4}],ImageScaled[{1,1}/2],1.5],
Inset[texOrange[k],ImageScaled[{.4,.6}],ImageScaled[{1,1}/2],1.5]
}],Background->None]


(* ::Section::Closed:: *)
(*Labels*)


(* ::Input::Initialization:: *)
getTextures[stage_,t_]:=Module[{list},
list={texSmoothFun[0],texSmoothFun[0],texSmoothFun[1],texSmoothFun[2],texSmoothFun[-2],texSmoothFun[-1],texSmoothFun[0],texGratingFun[t],texGratingFun[1],texSLM[1],texSLM[1],texSLM[2],texSLM[-2],texSLM[-1],texSLM[1],texSLM[1]};
list[[stage]]
]


(* ::Input::Initialization:: *)
slide[k1_,k2_,k3_]:=slideAsideTwo[{0,.5},{0.02,0 0.02},.3,.85,k1,k2,k3];
textlab[text_]:=Text[Framed[Style[text,50,FontColor->Black,FontFamily->"Times"],FrameStyle->Black],{.8,1.5}];
textlab[text_,tt_]:=fadeFun[textlab[text],tt];
tor2[k_,addGauss_:False]:=texFun[If[addGauss,texOrangePlusGauss[k],texOrange[k]],{.85,-.9}];
tor3[k_]:=texFun[texOrange[k],{-0.5,-.9}];


(* ::Input::Initialization:: *)
getLabels[stage_,t_,tex_]:=Module[{list,
arr1=arrowFun[{{-1.917,0.638},{-1.817,0.825},{-1.53,0.845},{-1.383`,0.6583`}}],
arr3=arrowFun[{{-0.8044`,-0.61`},{-0.8489`,-0.3789`},{-0.6978`,-0.1389`},{-0.4933`,-0.1389`}}],
arr2=arrowFun[{{1.151`,-0.5878`},{1.302`,-0.4056`},{1.053`,-.2}}],
tf=texFun[tex,{.25,1.5},EdgeForm[{Thick,Black}]]},

list={
{arr1,tf},
{arr1,arr2,tor2[0],slide[None,0,1][t]},
{arr1,arr2,tor2[1,True],textlab["+1",t],slide[0,1,2][t]},
{arr1,arr2,tor2[2,True],textlab["+2",t],slide[1,2,-2][t]},
{arr1,arr2,tor2[-2,True],textlab["-2",t],slide[2,-2,-1][t]},
{arr1,arr2,tor2[-1,True],textlab["-1",t],slide[-2,-1,0][t]},
{arr1,arr2,tor2[0],tf},
{arr1,arr2,tor2[0],tf},
{arr1,arr2,arr3,tor2[0],tor3[0],slidingHolos[t]},
{arr1,arr2,arr3,tor2[0],tor3[1],sumHolo[1],textlab["+1"]},
{fadeFun[{arr1,arr2,arr3,tor2[0]},t],tor3[1],sumHolo[1],textlab["+1"]},
{sumHolo[2],textlab["+2"],tor3[2]},
{sumHolo[-2],textlab["-2"],tor3[-2]},
{sumHolo[-1],textlab["-1"],tor3[-1]},
{fadeFun[sumHolo[+1],t],tf,textlab["+1"],tor3[1]},
fadeFun[{tf,textlab["+1"],tor3[1]},t]
};
list=Join[{texFun[texOrange[0],{-2.1,.3}]},#]&/@list;

list[[stage]]
]


(* ::Chapter:: *)
(*Composition*)


(* ::Section::Closed:: *)
(*Scene*)


(* ::Input::Initialization:: *)
scene[stage_,t_,tglob_]:=Module[{incbeam,reflbeam,reflbeam2,wavefrontsIn,wavefronts1,wavefronts2,gr3D,tex,texOut,texOut2,gr,imgRes=50,img},

tex=getTextures[stage,t];
gr3D=Graphics3D[{getSLM[tex],getBeams[stage,t,tglob]},
Lighting->{{"Point",White,2{-1,-1,0}},{"Point",White,2{1,-1,0}},{"Point",White,2{0,0,1}}},Boxed->False,ViewVertical->{0,0,1},ViewVector->{{10,-17,8},{0,0,0}},PlotRange->{{-1.5,1.5},{-1.8,0.2},{-1,1}}
];
gr=Graphics[{Inset[gr3D,{.25,.5},ImageScaled[{1,1}/2],4],getLabels[stage,t,tex]},ImageSize->900,PlotRange->{{-2.5,1.5},{-1.5,1.9}}];

(*rasterization is done basically only because of the very last stage where the whole scene fades away, with Graphics is it more complicated than with Image*)
img=Rasterize[gr,ImageResolution->imgRes];
If[stage==finalStageIdx,Blend[{img,ConstantImage[White,ImageDimensions[img]]},t],img]
]


(* ::Input:: *)
(*(*Manipulate[scene[stage,t,tg],{stage,1,16,1,Appearance\[Rule]"Open",ControlsRendering\[Rule]"Generic"},{{t,0.6},0,1,Appearance\[Rule]"Open",ControlsRendering\[Rule]Automatic},{tg,0,1,Appearance\[Rule]"Open"}]*)*)


(* ::Section::Closed:: *)
(*Generation and export*)


(* ::Input::Initialization:: *)
animation[t_]:=Module[{stage,tloc,num=finalStageIdx},
{stage,tloc}=QuotientRemainder[t,1/num];
stage+=1;
tloc*=num ;
If[stage==num+1,stage-=1;tloc=1];
tloc=Clip[1.2tloc,{0,1}];

scene[stage,tloc,15t]
]


(* ::Input:: *)
(*(*Manipulate[animation[t],{t,0,1}]*)*)


(* ::Input:: *)
(*numsamples=200-1;*)
(*frames=Table[animation[t],{t,0,1,1/numsamples}];*)
(*{time,frames}=AbsoluteTiming[Rasterize[#,ImageSize->500]&/@frames];*)


(* ::Input:: *)
(*time*)


(* ::Input:: *)
(*filename="anim.gif";*)
(*SetDirectory[NotebookDirectory[]]*)
(*SystemOpen@Export[filename,frames,AnimationRepetitions->Infinity,"DisplayDurations"->.25]*)

Captions

Generation of OAM beams using a spatial light modulator

Items portrayed in this file

depicts

20 January 2022

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:32, 20 January 2022Thumbnail for version as of 19:32, 20 January 2022503 × 428 (5.6 MB)JozumBjadaCross-wiki upload from cs.wikipedia.org

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata

Devtools
Interact with your site

This panel displays the activity of Edgio edge and browser caches and prefetching.

78741754-32CA-4E37-B0F8-7A60AB8D4089