Jump to content

File:Gaussian 2d 30 degrees.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (1,923 × 1,015 pixels, file size: 182 KB, MIME type: image/png)

Summary

Description
English: Created in Python with Numpy and Matplotlib.
Date
Source Own work
Author Kopak999

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Creation

This file was created with Python:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm

exp = np.exp
sqrt = np.sqrt
sin = np.sin
cos = np.cos
tau = 2 * np.pi

def ellipticalGaussian(
    X, Y,  
    sigma_x = 1/sqrt(2), 
    sigma_y = 1/sqrt(2),
    theta = 0,
):
    """
    Returns values of a Gaussian surface whose bell curve is elliptical 
    instead of circular.
    
    sigma_x: The standard deviation of the Gaussian in the X direction.
    
    sigma_y: The standard deviation of the Gaussian in the Y direction.
    
    sigma_x and sigma_y are comparable to the semimajor axes of an ellipse, and
    affect the shape of the Gaussian mound. 
    
    theta: The angle the Gaussian is rotated about the Z-axis.
    """
    
    a = cos(theta)**2 / (2*sigma_x**2) + sin(theta)**2 / (2*sigma_y**2)
    b = -sin(2*theta) / (4*sigma_x**2) + sin(2*theta) / (4*sigma_y**2)
    c = sin(theta)**2 / (2*sigma_x**2) + cos(theta)**2 / (2*sigma_y**2)
    
    return exp(-(a*(X**2) + 2*b*(X*Y) + c*(Y**2)))


def plotGaussianSurface(
    X, Y, Z,
    colormap=cm.cividis,  
    title="", 
    filetype="png", 
    saveflag=False, 
    resolution=200, 
    dpi=300,
    numticks_xy=7,
    numticks_z=2,
    numticks_xy_minor=25,
    numticks_z_minor=5,
):
    """
    Plots a 3D-surface of a 2D-Gaussian function.
    
    X, Y: Meshgrids of x- and y-values for the Gaussian.
    
    Z: The output of the Gaussian function.
    
    colormap: The colormap for the surface, mapped to the Z-values of the 
        graph.
    
    title: Title of the graph.
    
    filetype: Three-letter extension of the image filetype for saving the 
        graph. Default is png.
    
    saveflag: Boolean flag to check if the graph should be saved to a file.
        Set to True if you want to save the graph to a file. Default is False.
    
    resolution: Number of pixels to render along the x- and y-axes.
        Default is 200, which gives a 200x200 grid.
    
    dpi: Dots-per-inch of the image. Default is 300.
    """
    
    plt.ioff()
    
    # Set up kwargs:
    limit = int(np.ceil(np.amax(X)))
    zmin = int(np.floor(np.amin(Z)))
    zmax = int(np.ceil(np.amax(Z)))
    norm = mpl.colors.Normalize(vmin=zmin, vmax=zmax)
    aspect = (limit*2 + 1, limit*2 + 1, zmax)
    
    xy_major_params = dict(
        direction = "in",
    )
    xy_minor_params = dict(
        direction = "in",
        which = "minor",
    )
    xy_major_ticks = dict(
        ticks = np.linspace(-limit, limit, numticks_xy, endpoint=True,),
    )
    xy_minor_ticks = dict(
        ticks = np.linspace(-limit, limit, numticks_xy_minor, endpoint=True,), 
        minor = True,
    )
    z_major_params = dict(
        which = "major", 
        labelbottom = True, 
        labeltop = False,
    )
    z_minor_params = dict(
        which = "minor",
    )
    z_major_ticks = dict(
        ticks = np.linspace(0, zmax, numticks_z, endpoint=True,),
    )
    z_minor_ticks = dict(
        ticks = np.linspace(0, zmax, numticks_z_minor, endpoint=True,), 
        minor = True,
    )
    
    tick_labelsize = 7
    
    
    fig = plt.figure(dpi=dpi)
    ax = fig.add_subplot(1, 1, 1, projection ='3d')
    
    # Plot the surface
    surf = ax.plot_surface(
        X, Y, Z, 
        cmap = colormap, 
        linewidth=0, 
        antialiased=False, 
        vmin = zmin, vmax = zmax, 
        rcount = resolution, 
        ccount = resolution,
        norm = norm,
    )
    
    # Customize the z axis.
    ax.set_zlim(zmin, zmax)
    # ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter('{x:.1f}')
    
    
    ax.set_title(
        title, 
        fontdict = dict(verticalalignment = "bottom"),
    )
    
    ax.set_box_aspect(aspect)
    # ax.proj_type("ortho")
    ax.set_facecolor('none')
    
    # Set tick parameters
    ax.xaxis.set_tick_params(**xy_major_params)
    ax.xaxis.set_tick_params(**xy_minor_params)
    ax.yaxis.set_tick_params(**xy_major_params)
    ax.yaxis.set_tick_params(**xy_minor_params)
    ax.zaxis.set_tick_params(**z_major_params)
    ax.zaxis.set_tick_params(**z_minor_params)
    ax.set_xticks(**xy_major_ticks)
    ax.set_xticks(**xy_minor_ticks)
    ax.set_yticks(**xy_major_ticks)
    ax.set_yticks(**xy_minor_ticks)
    ax.set_zticks(**z_major_ticks)
    ax.set_zticks(**z_minor_ticks)
    ax.tick_params(labelsize=tick_labelsize)
    
    cbar = fig.colorbar(
        surf, 
        ax=ax, 
        orientation='vertical', 
        shrink=0.5, 
        aspect=12,
        pad = 0.10,
    )
    
    cbar.ax.tick_params(labelsize=tick_labelsize)
    
    if saveflag:
        savePlot(colormap, filetype)
    
    plt.tight_layout()
    
    plt.show()

x = y = np.linspace(-7, 7, 2**10, endpoint=True)
X, Y = np.meshgrid(x, y)

plotargs = dict(
    saveflag = False,
    dpi = 400,
    resolution = 200,
    numticks_xy=3, 
    numticks_xy_minor=15, 
    numticks_z=2, 
    numticks_z_minor=3,
)

plotGaussianSurface(X, Y, ellipticalGaussian(X, Y, sigma_x=1, sigma_y=2, theta=tau/12,), **plotargs)

Captions

3d plot of a Gaussian function with an elliptical shape, rotated 30 degrees.

Items portrayed in this file

depicts

16 December 2020

image/png

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current01:30, 17 December 2020Thumbnail for version as of 01:30, 17 December 20201,923 × 1,015 (182 KB)Kopak999Uploaded own work with UploadWizard

The following page uses this file:

Metadata