File:Fitzhugh-nagumo b = 2.0, with stable and unstable manifolds marked.png
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Size of this preview: 596 × 599 pixels. Other resolutions: 239 × 240 pixels | 477 × 480 pixels | 764 × 768 pixels | 1,019 × 1,024 pixels | 1,314 × 1,321 pixels.
Original file (1,314 × 1,321 pixels, file size: 505 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionFitzhugh-nagumo b = 2.0, with stable and unstable manifolds marked.png |
English: ```python
})
from matplotlib.widgets import AxesWidget import numpy as np import matplotlib.pyplot as plt from scipy.integrate import solve_ivp from scipy import optimize for alpha in [0.09]: # Define the parameter values a = 0.7 b = 2.0 # If b < 1.5, then there are stable loops. Else there are no loops. tau = 12.5 R = 0.1 I_ext_0 = (2/3 + (a-1)/b)/R I_ext_1 = (-2/3 + (a+1)/b)/R I_ext_min = min(I_ext_0, I_ext_1) - 2.0 / R I_ext_max = max(I_ext_0, I_ext_1) + 2.0 / R I_ext = I_ext_min * (alpha - 1.0)/(-2.0) + I_ext_max * (alpha + 1.0)/(+2.0) # If alpha < 1, then all trajectories fall to a stable equilibrium # If alpha > 1, and b < 1.5, then all trajectories fall to a stable loop. # Define the system of ODEs def system(t, y): v, w = y dv = v - (v ** 3) / 3 - w + R * I_ext dw = (1 / tau) * (v + a - b * w) return [dv, dw] def system_reversed(t, y): v, w = y dv = v - (v ** 3) / 3 - w + R * I_ext dw = (1 / tau) * (v + a - b * w) return [-dv, -dw] vmin, vmax, wmin, wmax = -2, 2, -2+R*I_ext, 2+R*I_ext t_span = [0, 100] trajectory_resolution = 10 def fun(x): v = x[0] return v-v**3/3 + R * I_ext - (v+a)/b sol = optimize.root(fun, [0], method='hybr') x_root = sol.x[0] y_root = (x_root+a)/b # vmin, vmax, wmin, wmax = -1.5, -0.5, -1.1 +1/3 + R * I_ext, -0.8 +1/3 + R * I_ext # initial_conditions = [(-1.0, y) for y in np.linspace(-0.16, -0.03, 30)] initial_conditions = [(x, y) for x in np.linspace(vmin, vmax, trajectory_resolution) for y in np.linspace(wmin, wmax, trajectory_resolution)] epsilon = 0.005 initial_conditions += [(x, y) for x in np.linspace(x_root - epsilon, x_root+epsilon, trajectory_resolution) for y in np.linspace(y_root - epsilon, y_root+epsilon, trajectory_resolution)] sols = {} for ic in initial_conditions: sols[ic] = solve_ivp(system, t_span, ic, dense_output=True, max_step=0.1) sols_reversed = {} for ic in initial_conditions: sols_reversed[ic] = solve_ivp(system_reversed, t_span, ic, dense_output=True, max_step=0.1) vs = np.linspace(vmin, vmax, 200) v_axis = np.linspace(vmin, vmax, 20) w_axis = np.linspace(wmin, wmax, 20) v_values, w_values = np.meshgrid(v_axis, w_axis) dv = v_values - (v_values ** 3) / 3 - w_values + R * I_ext dw = (1 / tau) * (v_values + a - b * w_values) fig, ax = plt.subplots(figsize=(16,16)) # integral curves for ic in initial_conditions: sol = sols[ic] ax.plot(sol.y[0], sol.y[1], color='k', alpha=0.4, linewidth=0.5) sol = sols_reversed[ic] ax.plot(sol.y[0], sol.y[1], color='k', alpha=0.4, linewidth=0.5) # vector fields arrow_lengths = np.sqrt(dv**2 + dw**2) alpha_values = 1 - (arrow_lengths / np.max(arrow_lengths))**0.4 ax.quiver(v_values, w_values, dv, dw, color='blue', linewidth=0.5, scale=25, alpha=alpha_values) # nullclines ax.plot(vs, vs - vs**3/3 + R * I_ext, color="green", alpha=0.4, label="v nullcline") ax.plot(vs, (vs + a) / b, color="red", alpha=0.4, label="w nullcline") # ax.set_xlabel('v') # ax.set_ylabel('w')ax.set_title(f'FitzHugh-Nagumo Model\n$b={b:.2f}$\t\t$I_ Estremeñu: (missing text) = {I_ext:.2f# ax.legend() ax.set_xlim(vmin, vmax) ax.set_ylim(wmin, wmax) # ax.set_xticks([]) # ax.set_yticks([]) plt.show()``` |
Source | Own work |
Author |
This file is lacking author information.
|
|date=2023-04-25 |source=Own work |author=Cosmia Nebula }}
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Items portrayed in this file
depicts
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 23:57, 25 April 2023 | 1,314 × 1,321 (505 KB) | Cosmia Nebula | Uploaded while editing "FitzHugh–Nagumo model" on en.wikipedia.org |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Software used | |
---|---|
Horizontal resolution | 39.37 dpc |
Vertical resolution | 39.37 dpc |