File:Comparison gender life expectancy CIA factbook.svg
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Size of this PNG preview of this SVG file: 512 × 448 pixels. Other resolutions: 274 × 240 pixels | 549 × 480 pixels | 878 × 768 pixels | 1,170 × 1,024 pixels | 2,341 × 2,048 pixels.
Original file (SVG file, nominally 512 × 448 pixels, file size: 127 KB)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionComparison gender life expectancy CIA factbook.svg |
English: Comparison of male and female life expectancy at birth for countries and territories as defined in the 2011 CIA Factbook, with selected bubbles labelled. Hover over a bubble to highlight it and show its data. The green line corresponds to equal female and male life expectancy. The apparent 3D volumes of the bubbles are linearly proportional to their population, i.e. their radii are linearly proportional to the cube root of the population. Data is from https://www.cia.gov/library/publications/the-world-factbook/fields/2102.html and https://www.cia.gov/library/publications/the-world-factbook/fields/2119.html . |
Source | Own work |
Author | Cmglee |
Other versions | Derivative chart based on data of WHO: File:Comparison gender life expectancy WHO.svg |
SVG development InfoField | This flag uses embedded text that can be easily translated using a text editor. |
Python script to fetch data and update data table
import re, os, urllib2, time, datetime, collections
data_oldss = [line.split('|') for line in '''\
-1|WORLD|69|67|71.1|7323187457|-
-20|EUROPEAN UNION|80.2|77.4|83.2|515052778|-
20|China|75.5|73.5|77.9|1373541278|ea
10|India|68.5|67.3|69.8|1266883598|as
25|USA|79.8|77.5|82.1|323995528|na
|Indonesia|72.7|70.1|75.5|258316051|ea
|Brazil|73.8|70.2|77.5|205823665|sa
|Pakistan|67.7|65.8|69.8|201995540|as
-20|Nigeria|53.4|52.4|54.5|186053386|af
|Bangladesh|73.2|71|75.4|156186882|as
-10|Russia|70.8|65|76.8|142355415|eu
1|Japan|85|81.7|88.5|126702133|ea
|Mexico|75.9|73.1|78.8|123166749|na
|Philippines|69.2|65.7|72.9|102624209|ea
|Ethiopia|62.2|59.8|64.7|102374044|af
|Vietnam|73.4|70.9|76.2|95261021|ea
|Egypt|72.7|71.4|74.2|94666993|af
|Iran|71.4|69.8|73.1|82801633|me
-15|DR Congo|57.3|55.8|58.9|81331050|af
|Germany|80.7|78.4|83.1|80722792|eu
|Turkey|74.8|72.5|77.3|80274604|me
|Thailand|74.7|71.5|78|68200824|ea
|France|81.8|78.7|85.1|66836154|eu
12|UK|80.7|78.5|83|64430428|eu
|Italy|82.2|79.6|85|62007540|eu
|Burma|66.6|64.2|69.2|56890418|ea
|South Africa|63.1|61.6|64.6|54300704|af
|Tanzania|62.2|60.8|63.6|52482726|af
|Korea, South|82.4|79.3|85.8|50924172|ea
|Spain|81.7|78.7|84.9|48563476|eu
|Colombia|75.7|72.6|79|47220856|sa
|Kenya|64|62.6|65.5|46790758|af
|Ukraine|71.8|67.1|76.9|44209733|eu
|Argentina|77.1|74|80.4|43886748|sa
|Algeria|76.8|75.5|78.2|40263711|af
|Poland|77.6|73.7|81.7|38523261|eu
|Uganda|55.4|54|56.9|38319241|af
|Iraq|74.9|72.6|77.2|38146025|me
|Sudan|64.1|62|66.3|36729501|af
|Canada|81.9|79.2|84.6|35362905|na
|Morocco|76.9|73.8|80.1|33655786|af
-15|Afghanistan|51.3|49.9|52.7|33332025|as
|Malaysia|75|72.2|78|30949962|ea
|Venezuela|75.8|72.7|78.9|30912302|sa
|Peru|73.7|71.7|75.9|30741062|sa
|Uzbekistan|73.8|70.7|77|29473614|ca
|Nepal|70.7|70.1|71.3|29033914|as
|Saudi Arabia|75.3|73.2|77.4|28160273|me
|Yemen|65.5|63.4|67.8|27392779|me
|Ghana|66.6|64.1|69.1|26908262|af
|Mozambique|53.3|52.6|54.1|25930150|af
|Korea, North|70.4|66.6|74.5|25115311|ea
|Madagascar|65.9|64.4|67.4|24430325|af
|Cameroon|58.5|57.1|59.9|24360803|af
|Cote d'Ivoire|58.7|57.5|59.9|23740424|af
|Taiwan|80.1|77|83.5|23464787|ea
|Australia|82.2|79.8|84.8|22992654|oc
|Sri Lanka|76.8|73.3|80.4|22235000|as
|Romania|75.1|71.7|78.8|21599736|eu
|Angola|56|54.8|57.2|20172332|af
|Burkina Faso|55.5|53.4|57.6|19512533|af
|Niger|55.5|54.3|56.8|18638600|af
|Malawi|61.2|59.2|63.2|18570321|af
|Kazakhstan|70.8|65.6|75.7|18360353|ca
|Chile|78.8|75.7|81.9|17650114|sa
|Mali|55.8|53.9|57.7|17467108|af
|Syria|74.9|72.5|77.4|17185170|me
|Netherlands|81.3|79.2|83.6|17016967|eu
|Ecuador|76.8|73.8|79.9|16080778|sa
|Cambodia|64.5|62|67.1|15957223|ea
|Zambia|52.5|50.8|54.1|15510711|af
|Guatemala|72.3|70.3|74.4|15189958|la
|Zimbabwe|58|57.3|58.7|14546961|af
|Senegal|61.7|59.7|63.8|14320055|af
|Rwanda|60.1|58.5|61.7|12988423|af
|Guinea|60.6|59|62.2|12093349|af
-1|Chad|50.2|49|51.5|11852462|af
|Belgium|81|78.4|83.7|11409077|eu
|Cuba|78.7|76.4|81.1|11179995|la
|Tunisia|76.1|74|78.4|11134588|af
|Burundi|60.5|58.8|62.3|11099298|af
|Bolivia|69.2|66.4|72.1|10969649|sa
|Portugal|79.3|76.1|82.8|10833816|eu
|Somalia|52.4|50.3|54.5|10817354|af
|Greece|80.5|77.9|83.3|10773253|eu
|Benin|61.9|60.5|63.3|10741458|af
|Czechia|78.6|75.7|81.8|10644842|eu
|Dominican Republic|78.1|75.9|80.5|10606865|la
|Haiti|63.8|61.2|66.4|10485800|la
|Sweden|82.1|80.2|84.1|9880604|eu
|Hungary|75.9|72.2|79.8|9874784|eu
|Azerbaijan|72.5|69.5|75.8|9872765|me
-17|Belarus|72.7|67.2|78.6|9570376|eu
|Honduras|71.1|69.5|72.8|8893259|la
|Austria|81.5|78.9|84.3|8711770|eu
|Tajikistan|67.7|64.6|71|8330946|ca
|Jordan|74.6|73.2|76.1|8185384|me
|Switzerland|82.6|80.3|85|8179294|eu
|Israel|82.4|80.6|84.4|8174527|me
|Togo|65|62.3|67.7|7756937|af
|Hong Kong|82.9|80.3|85.8|7167403|ea
|Bulgaria|74.5|71.2|78|7144653|eu
|Serbia|75.5|72.6|78.5|7143921|eu
|Laos|64.3|62.2|66.4|7019073|ea
|Paraguay|77.2|74.5|80|6862812|sa
|Papua New Guinea|67.2|65|69.5|6791317|ea
|Libya|76.5|74.7|78.3|6541948|af
|Lebanon|77.6|76.3|78.9|6237738|me
|El Salvador|74.7|71.4|78.1|6156670|la
|Sierra Leone|58.2|55.6|60.9|6018888|af
|Nicaragua|73.2|71.1|75.5|5966798|la
|United Arab Emirates|77.5|74.8|80.2|5927482|me
|Eritrea|64.9|62.4|67.5|5869869|af
10|Singapore|85|82.3|87.8|5781728|ea
|Kyrgyzstan|70.7|66.5|75.1|5727553|ca
|Denmark|79.4|77|82|5593785|eu
|Central African Republic|52.3|51|53.7|5507257|af
|Finland|80.9|77.9|84|5498211|eu
|Slovakia|77.1|73.5|80.9|5445802|eu
|Turkmenistan|70.1|67.1|73.3|5291317|ca
|Norway|81.8|79.8|83.9|5265158|eu
|Ireland|80.8|78.5|83.2|4952473|eu
|Georgia|76.2|72.1|80.6|4928052|me
|Costa Rica|78.6|75.9|81.4|4872543|la
|Congo, Republic of the|59.3|58.1|60.6|4852412|af
|New Zealand|81.2|79.1|83.3|4474549|oc
|Croatia|75.9|72.7|79.2|4313707|eu
|Liberia|59|57.3|60.8|4299944|af
|Bosnia and Herzegovina|76.7|73.7|80|3861912|eu
|Panama|78.6|75.8|81.6|3705246|la
|Mauritania|63|60.7|65.4|3677293|af
|Puerto Rico|79.4|75.8|83.1|3578056|la
|Moldova|70.7|66.9|74.8|3510485|eu
|Oman|75.5|73.5|77.5|3355262|me
|Uruguay|77.2|74.1|80.5|3351016|sa
|Armenia|74.6|71.4|78.3|3051250|me
|Albania|78.3|75.7|81.2|3038594|eu
|Mongolia|69.6|65.4|74.1|3031330|ea
|Jamaica|73.6|72|75.3|2970340|la
|Lithuania|74.9|69.5|80.6|2854235|eu
|Kuwait|78|76.6|79.4|2832776|me
|West Bank|75|73|77.1|2697687|me
|Namibia|63.6|62.1|65.1|2436469|af
|Qatar|78.7|76.7|80.8|2258283|me
1|Botswana|54.5|56.3|52.6|2209208|af
|Macedonia|76.2|73.6|79|2100025|eu
|Gambia, The|64.9|62.5|67.3|2009648|af
|Slovenia|78.2|74.6|82|1978029|eu
|Latvia|74.5|69.9|79.3|1965686|eu
|Lesotho|53|52.9|53.1|1953070|af
-2|Guinea-Bissau|50.6|48.6|52.7|1759159|af
|Gaza Strip|73.9|72.3|75.7|1753327|me
|Gabon|52.1|51.6|52.5|1738541|af
1|Swaziland|51.6|52.2|51|1451428|af
|Bahrain|78.9|76.7|81.1|1378904|me
|Mauritius|75.6|72.2|79.2|1348242|af
|Timor-Leste|68.1|66.5|69.7|1261072|ea
|Estonia|76.7|71.9|81.7|1258545|eu
|Trinidad and Tobago|72.9|69.9|75.9|1220479|la
|Cyprus|78.7|75.8|81.6|1205575|eu
|Fiji|72.7|70|75.5|915303|oc
|Djibouti|63.2|60.7|65.8|846687|af
|Comoros|64.2|61.9|66.6|794678|af
|Equatorial Guinea|64.2|63.1|65.4|759451|af
|Bhutan|70.1|69.1|71.1|750125|as
|Guyana|68.4|65.4|71.5|735909|sa
|Solomon Islands|75.3|72.7|78.1|635027|oc
-10|Macau|84.5|81.6|87.6|597425|ea
|Western Sahara|63|60.7|65.4|587020|af
|Suriname|72.2|69.8|74.8|585824|sa
|Luxembourg|82.3|79.8|84.9|582291|eu
|Cabo Verde|72.1|69.8|74.5|553432|af
|Brunei|77.2|74.8|79.6|436620|ea
|Malta|80.4|78|82.8|415196|eu
|Maldives|75.6|73.3|78|392960|as
|Belize|68.7|67.2|70.4|353858|la
|Iceland|83|80.9|85.3|335878|eu
|Bahamas, The|72.4|70|74.8|327316|la
|Barbados|75.3|73|77.7|291495|la
|French Polynesia|77.2|74.9|79.6|285321|oc
|Vanuatu|73.4|71.8|75.1|277554|oc
|New Caledonia|77.7|73.7|81.9|275355|oc
|Samoa|73.7|70.8|76.8|198926|oc
|Sao Tome and Principe|64.9|63.6|66.3|197541|af
|Saint Lucia|77.8|75|80.7|164464|la
|Guam|79.1|76.1|82.4|162742|oc
|Curacao|78.3|76|80.7|149035|la
|Aruba|76.8|73.7|79.9|113648|la
|Grenada|74.3|71.7|77.1|111219|la
|Kiribati|66.2|63.7|68.8|106925|oc
|Tonga|76.2|74.7|77.8|106513|oc
|Micronesia, Federated States of|72.9|70.8|75|104719|oc
|Virgin Islands|80|77|83.2|102951|la
|Saint Vincent and the Grenadines|75.3|73.3|77.4|102350|la
|Jersey|81.9|79.4|84.5|98069|eu
|Antigua and Barbuda|76.5|74.4|78.8|93581|la
|Seychelles|74.7|70.2|79.4|93186|af
|Isle of Man|81.2|79.5|83|88195|eu
|Andorra|82.8|80.6|85.1|85660|eu
|Dominica|77|74|80.1|73757|la
|Marshall Islands|73.1|70.9|75.4|73376|oc
|Bermuda|81.3|78.1|84.5|70537|na
|Guernsey|82.5|79.9|85.4|66297|eu
|Greenland|72.4|69.7|75.2|57728|na
|Cayman Islands|81.2|78.5|84|57268|la
|American Samoa|75.4|72.4|78.5|54194|oc
|Northern Mariana Islands|78|75.3|80.8|53467|oc
|Saint Kitts and Nevis|75.7|73.3|78.2|52329|la
|Turks and Caicos Islands|79.8|77.1|82.7|51430|la
|Faroe Islands|80.4|77.8|83.1|50456|eu
|Sint Maarten|78.1|75.8|80.6|41486|la
|Liechtenstein|81.9|79.7|84.6|37937|eu
|British Virgin Islands|78.6|77.2|80.1|34232|la
|San Marino|83.3|80.7|86.1|33285|eu
-1|Monaco|89.5|85.6|93.5|30581|eu
|Gibraltar|79.4|76.6|82.5|29328|eu
|Palau|73.1|69.9|76.5|21347|oc
|Anguilla|81.4|78.8|84.1|16752|la
|Wallis and Futuna|79.7|76.7|82.8|15664|oc
|Tuvalu|66.5|64.3|68.8|10959|oc
|Nauru|67.1|63|70.5|9591|oc
|Cook Islands|75.8|73|78.8|9556|oc
|Saint Helena, Ascension, and Tristan da Cunha|79.5|76.6|82.6|7795|af
|Saint Pierre and Miquelon|80.5|78.2|83|5595|na
1|Montserrat|74.4|75.8|72.9|5267|la
|Falkland Islands (Islas Malvinas)|77.9|75.6|79.6|2931|sa
|Svalbard|NA|NA|NA|2667|eu
|Norfolk Island|NA|NA|NA|2210|oc
|Christmas Island|NA|NA|NA|2205|oc
|Tokelau|NA|NA|NA|1285|oc
|Niue|NA|NA|NA|1190|oc
|Cocos (Keeling) Islands|NA|NA|NA|596|oc
|Pitcairn Islands|NA|NA|NA|54|oc
'''.strip().split('\n')]
# do_refresh_cache = True
def read_url(url, headers={}, path_cache=None, is_verbose=True):
if (path_cache is None):
file_cache = os.path.basename(url)
path_cache = os.path.join('%s.cache' % (os.path.splitext(__file__)[0]),
file_cache if (len(file_cache) > 0) else
'%s.htm' % (os.path.basename(url.rstrip('/'))))
if (('do_refresh_cache' in globals() and do_refresh_cache) or
(not os.path.isfile(path_cache))):
request = urllib2.Request(url, headers=headers)
try: html = urllib2.urlopen(request).read()
except urllib2.HTTPError as e: html = ''; print(e)
try: os.makedirs(os.path.dirname(path_cache))
except OSError: pass
with open(path_cache, 'wb') as f_html: f_html.write(html)
if (is_verbose): print('%s > %s' % (url, path_cache))
time.sleep(1) ## avoid rate-limit-exceeded error
else:
with open(path_cache) as f_html: html = f_html.read()
if (is_verbose): print('< %s' % (path_cache))
try: html = html.decode('utf-8')
except UnicodeDecodeError: pass
return html
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0+$', '', str(eval(tag[1:-1])))
if (i_sep < 0) else ('{:%s}' % tag[i_sep + 1:-1]).format(eval(tag[1:i_sep])))
return (re.sub(r'(?<!{){[^{}]+}', lambda m:f(m.group()), string)
.replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def format_tab(*arg): return '\t'.join([str(el) for el in (arg if len(arg) > 1 else arg[0])])
def tabbify(cellss, separator='|'):
cellpadss = [list(rows) + [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def try_int_float(field):
try: return int(field)
except:
try: return float(field)
except: return field
def roundm(x, multiple=1):
try: x[0]; return [roundm(element, multiple) for element in x] ## x[0] checks if x is iterable
except: return int(math.floor(float(x) / multiple + 0.5)) * multiple
def findall(regex, string):
return re.findall(regex, string, flags=re.I|re.DOTALL)
def sub(regex_replace, regex_with, string):
return str(re.sub(regex_replace, regex_with, string, flags=re.DOTALL).strip())
def make_serial(name): return sub(r'[^a-z]', '', name.lower())
def make_table(datass):
return '\n'.join(['|'.join([str(data) for data in datas]) for datas in datass])
data_newss = {}
html_expectancy = read_url('http://cia.gov/library/publications/resources/the-world-factbook/fields/355.html')
html_expectancyss = findall(r'(<td.+?</td>)\s*(<td.+?</td>)', html_expectancy)
for html_expectancys in html_expectancyss:
html_divs = findall(r'<div.+?</div>', html_expectancys[1])
name = sub(r'<.*?>', '', html_expectancys[0])
serial = make_serial(name)
# expectancy_male = None
# expectancy_female = None
# try: expectancy_male = float(findall(r'[\d.]+(?= years)', html_divs[1])[0])
# except Exception: pass
# try: expectancy_female = float(findall(r'[\d.]+(?= years)', html_divs[2])[0])
# except Exception: pass
# if (not serial in data_newss): data_newss[serial] = {}
# data_newss[serial]['male' ] = expectancy_male
# data_newss[serial]['female'] = expectancy_female
try:
expectancy_overall = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[0])[0])
expectancy_male = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[1])[0])
expectancy_female = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[2])[0])
if (not serial in data_newss): data_newss[serial] = {}
data_newss[serial]['overall'] = expectancy_overall
data_newss[serial]['male' ] = expectancy_male
data_newss[serial]['female' ] = expectancy_female
except Exception: pass
html_population = read_url('http://cia.gov/library/publications/resources/the-world-factbook/fields/335.html')
html_populationss = findall(r'(<td.+?</td>)\s*(<td.+?</td>)', html_population)
for html_populations in html_populationss:
name = sub(r'<.*?>', '', html_populations[0])
serial = make_serial(name)
# population = None
# if (not 'no indigenous' in html_populations[1]):
# try: population = int(sub(',','',findall(r'[\d,]+', html_populations[1])[0]))
# except Exception: pass
# if (not serial in data_newss): data_newss[serial] = {}
# data_newss[serial]['population'] = population
if (not 'no indigenous' in html_populations[1]):
try:
population = int(sub(',','',findall(r'[\d,]+', html_populations[1])[0]))
if (not serial in data_newss): data_newss[serial] = {}
data_newss[serial]['name'] = name
data_newss[serial]['population'] = population
except Exception: pass
outss = []
for serial in sorted(data_newss):
data_news = data_newss[serial]
try: outss.append([serial, data_news['name'], data_news['population'],
data_news['overall'], data_news['male'], data_news['female']])
# data_news['population'] if ('population' in data_news) else None,
# data_news['male'] if ('male' in data_news) else None,
# data_news['female'] if ('female' in data_news) else None])
except Exception: pass
# print(data_newss.pop(serial))
# print(tabbify(outss))
outss = []
# print(tabbify(data_oldss))
map_keeps = {'usa':'unitedstates', 'uk':'unitedkingdom', 'drcongo':'congodemocraticrepublicofthe'}
map_changes = {'swaziland':'eswatini'}
for data_olds in data_oldss:
name = data_olds[1]
serial = make_serial(name)
data_news = None
try:
if (serial in map_keeps): serial = map_keeps[serial]
if (serial in map_changes):
serial = map_changes[serial]
data_news = data_newss[serial]
name = data_news['name']
else:
data_news = data_newss[serial]
except Exception: pass
outss.append([data_olds[0],
name,
# data_news['name' ] if ('name' in data_news) else 'NA',
data_news['overall' ] if ('overall' in data_news) else 'NA',
data_news['male' ] if ('male' in data_news) else 'NA',
data_news['female' ] if ('female' in data_news) else 'NA',
data_news['population'] if ('population' in data_news) else 'NA',
data_olds[6]])
# outss.append(data_olds)
if (name != data_news['name']): print(name, data_news['name'])
# print(tabbify(outss))
outss = outss[:2] + sorted(outss[2:], key=lambda lines:lines[5], reverse=True)
dir_cache = '%s.cache' % (os.path.splitext(__file__)[0])
with open(os.path.join(dir_cache, 'old.txt'), 'w') as f: f.write(make_table(data_oldss))
with open(os.path.join(dir_cache, 'new.txt'), 'w') as f: f.write(make_table(outss))
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
You may select the license of your choice.
Items portrayed in this file
depicts
image/svg+xml
70ad5dbacbff2843897fff5dd186c06900a6682e
130,119 byte
448 pixel
512 pixel
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 22:21, 27 February 2019 | 512 × 448 (127 KB) | Cmglee | Update with 2018 data. | |
19:59, 19 June 2017 | 512 × 448 (127 KB) | Cmglee | Update with 2016 data. | ||
01:42, 7 February 2016 | 512 × 512 (128 KB) | Cmglee | Add interactivity using CSS and title tag. | ||
04:34, 28 June 2015 | 512 × 512 (95 KB) | Leftcry | Fix | ||
03:49, 25 June 2015 | 512 × 512 (95 KB) | Leftcry | Europe classification | ||
21:26, 20 November 2011 | 512 × 512 (59 KB) | Cmglee | Update colours. | ||
20:21, 20 November 2011 | 512 × 512 (59 KB) | Cmglee | {{Information |Description ={{en|1=Comparison of male and female life expectancy at birth for countries and territories as defined in the 2011 CIA Factbook, with selected bubbles labelled. The dotted line corresponds to equal female and male life expec |
File usage
The following 9 pages use this file:
Global file usage
The following other wikis use this file:
- Usage on ar.wikipedia.org
- Usage on as.wikipedia.org
- Usage on be-tarask.wikipedia.org
- Usage on bn.wikipedia.org
- Usage on bs.wikipedia.org
- Usage on el.wikipedia.org
- Usage on gl.wikipedia.org
- Usage on he.wikipedia.org
- Usage on id.wikipedia.org
- Usage on it.wikipedia.org
- Usage on ja.wikipedia.org
- Usage on ro.wikipedia.org
- Usage on sh.wikipedia.org
- Usage on sr.wikipedia.org
- Usage on th.wikipedia.org
- Usage on uk.wikipedia.org
- Usage on uz.wikipedia.org
- Usage on wikimania2016.wikimedia.org
- Usage on zh-yue.wikipedia.org
- Usage on zh.wikipedia.org
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Short title | comparison gender life expectancy CIA factbook |
---|---|
Image title | Comparison of male and female life expectancy at birth (2018 estimate) for countries and territories as defined in the CIA Factbook, with selected bubbles labelled, by CMG Lee. Hover over a bubble to highlight it and show its data. The dotted line corresponds to equal female and male life expectancy. The apparent 3D volumes of the bubbles are linearly proportional to their populations, i.e. their radii are linearly proportional to the cube root of the populations. Data is from https://www.cia.gov/library/publications/resources/the-world-factbook/fields/355.html and https://www.cia.gov/library/publications/resources/the-world-factbook/fields/335.html . |
Width | 100% |
Height | 100% |