Jump to content

Isotopes of cadmium

From Wikipedia, the free encyclopedia
(Redirected from Cadmium-105m)

Isotopes of cadmium (48Cd)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
106Cd 1.25% stable
107Cd synth 6.5 h ε 107Ag
108Cd 0.89% stable
109Cd synth 462.6 d ε 109Ag
110Cd 12.5% stable
111Cd 12.8% stable
112Cd 24.1% stable
113Cd 12.2% 8.04×1015 y β 113In
113mCd synth 14.1 y β 113In
IT 113Cd
114Cd 28.8% stable
115Cd synth 53.46 h β 115In
116Cd 7.51% 2.8×1019 y ββ 116Sn
Standard atomic weight Ar°(Cd)

Naturally occurring cadmium (48Cd) is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long half-lives. The two natural radioactive isotopes are 113Cd (beta decay, half-life is 8.04 × 1015 years) and 116Cd (two-neutrino double beta decay, half-life is 2.8 × 1019 years). The other three are 106Cd, 108Cd (double electron capture), and 114Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—110Cd, 111Cd, and 112Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are 109Cd with a half-life of 462.6 days, and 115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 known meta states, with the most stable being 113mCd (t1/2 14.1 years), 115mCd (t1/2 44.6 days) and 117mCd (t1/2 3.36 hours).

The known isotopes of cadmium range in atomic mass from 94.950 u (95Cd) to 131.946 u (132Cd). The primary decay mode before the second most abundant stable isotope, 112Cd, is electron capture and the primary modes after are beta emission and electron capture. The primary decay product before 112Cd is element 47 (silver) and the primary product after is element 49 (indium).

A 2021 study has shown at high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation.[4]

List of isotopes

[edit]


Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 9]
Natural abundance (mole fraction)
Excitation energy[n 9] Normal proportion[1] Range of variation
94Cd 48 46 93.95659(54)# 80# ms
[>760 ns]
0+
95Cd 48 47 94.94948(61)# 32(3) ms β+ (95.4%) 95Ag 9/2+#
β+, p (4.6%) 94Pd
96Cd 48 48 95.94034(44)# 1.003(47) s β+ (98.4%) 96Ag 0+
β+, p (1.6%) 95Pd
96m1Cd 6000(1400) keV 511(26) ms β+ (84.6%) 96Ag 16+
β+, p (15.4%) 95Pd
96m2Cd 5605(5) keV 198(18) ns IT 96Cd (12−,13−)
97Cd 48 49 96.93480(45) 1.16(5) s β+ (92.6%) 97Ag (9/2+)
β+, p (7.4%) 96Pd
97m1Cd 1245.1(2) keV 730(70) μs IT 97Cd (1/2−)
97m2Cd 2620(580) keV 3.86(6) s β+ (74.9%) 97Ag (25/2+)
β+, p (25.1%) 96Pd
98Cd 48 50 97.927389(56) 9.29(10) s β+ (>99.97%) 98Ag 0+
β+, p (<0.029%) 97Ag
98m1Cd 2428.3(4) keV 154(16) ns IT 98Cd (8+)
98m2Cd 6635(2) keV 224(5) ns IT 98Cd (12+)
99Cd 48 51 98.9249258(17) 17(1) s β+ (99.79%) 99Ag 5/2+#
β+, p (0.21%) 98Pd
β+, α (<10−4%) 95Rh
100Cd 48 52 99.9203488(18) 49.1(5) s β+ 100Ag 0+
101Cd 48 53 100.9185862(16) 1.36(5) min β+ 101Ag 5/2+
102Cd 48 54 101.9144818(18) 5.5(5) min β+ 102Ag 0+
103Cd 48 55 102.9134169(19) 7.3(1) min β+ 103Ag 5/2+
104Cd 48 56 103.9098562(18) 57.7(10) min β+ 104Ag 0+
105Cd 48 57 104.9094639(15) 55.5(4) min β+ 105Ag 5/2+
105mCd 2517.6(5) keV 4.5(5) μs IT 105Cd (21/2+)
106Cd 48 58 105.9064598(12) Observationally Stable[n 10] 0+ 0.01245(22)
107Cd 48 59 106.9066120(18) 6.50(2) h β+ 107Ag 5/2+
108Cd 48 60 107.9041836(12) Observationally Stable[n 11] 0+ 0.00888(11)
109Cd 48 61 108.9049867(16) 461.3(5) d EC 109Ag 5/2+
109m1Cd 59.60(7) keV 11.8(16) μs IT 109Cd 1/2+
109m2Cd 463.10(11) keV 10.6(4) μs IT 109Cd 11/2−
110Cd 48 62 109.90300747(41) Stable 0+ 0.12470(61)
111Cd[n 12] 48 63 110.90418378(38) Stable 1/2+ 0.12795(12)
111mCd 396.214(21) keV 48.50(9) min IT 111Cd 11/2−
112Cd[n 12] 48 64 111.90276390(27) Stable 0+ 0.24109(7)
113Cd[n 12][n 13] 48 65 112.90440811(26) 8.04(5)×1015 y β 113In 1/2+ 0.12227(7)
113mCd[n 12] 263.54(3) keV 13.89(11) y β (99.90%) 113In 11/2−
IT (0.0964%) 113Cd
114Cd[n 12] 48 66 113.90336500(30) Observationally Stable[n 14] 0+ 0.28754(81)
115Cd[n 12] 48 67 114.90543743(70) 53.46(5) h β 115mIn 1/2+
115mCd 181.0(5) keV 44.56(24) d β 115mIn 11/2−
116Cd[n 12][n 13] 48 68 115.90476323(17) 2.69(9)×1019 y ββ 116Sn 0+ 0.07512(54)
117Cd 48 69 116.9072260(11) 2.503(5) h β 117In 1/2+
117mCd 136.4(2) keV 3.441(9) h β 117In 11/2−
118Cd 48 70 117.906922(21) 50.3(2) min β 118In 0+
119Cd 48 71 118.909847(40) 2.69(2) min β 119In 1/2+
119mCd 146.54(11) keV 2.20(2) min β 119In 11/2−
120Cd 48 72 119.9098681(40) 50.80(21) s β 120In 0+
121Cd 48 73 120.9129637(21) 13.5(3) s β 121In 3/2+
121mCd 214.86(15) keV 8.3(8) s β 121In 11/2−
122Cd 48 74 121.9134591(25) 5.98(10) s[6] β 122In 0+
123Cd 48 75 122.9168925(29) 2.10(2) s β 123In 3/2+
123mCd 143(4) keV 1.82(3) s β (?%) 123In 11/2−
IT (?%) 123Cd
124Cd 48 76 123.9176598(28) 1.25(2) s β 124In 0+
125Cd 48 77 124.9212576(31) 680(40) ms β 125In 3/2+
125m1Cd 186(4) keV 480(30) ms β 125In 11/2−
125m2Cd 1648(4) keV 19(3) μs IT 125Cd (19/2+)
126Cd 48 78 125.9224303(25) 512(5) ms β 126In 0+
127Cd 48 79 126.9262033(67) 480(100) ms β 127In 3/2+
127m1Cd 285(8) keV 360(40) ms β 127In 11/2−
127m2Cd 1845(8) keV 17.5(3) μs IT 127Cd (19/2+)
128Cd 48 80 127.9278168(69) 246(2) ms β 128In 0+
128m1Cd 1870.5(3) keV 270(7) ns IT 128Cd (5−)
128m2Cd 2714.6(4) keV 3.56(6) μs IT 128Cd (10+)
128m2Cd 4286.6(15) keV 6.3(8) ms IT 128Cd (15−)
129Cd 48 81 128.9322356(57) 147(3) ms β (?%) 129In 11/2−
β, n (?%) 128In
129m1Cd 343(8) keV 157(8) ms β (?%) 129In 3/2+
β, n (?%) 128In
129m2Cd 2283(8) keV 3.6(2) ms IT 129Cd (21/2+)
130Cd 48 82 129.934388(24) 126.8(18) ms β (96.5%) 130In 0+
β, n (3.5%) 129In
130mCd 2129.6(10) keV 240(16) ns IT 130Cd (8+)
131Cd 48 83 130.940728(21) 98(2) ms β (96.5%) 131In 7/2−#
β, n (3.5%) 130In
132Cd 48 84 131.945823(64) 84(5) ms β, n (60%) 131In 0+
β (40%) 132In
133Cd 48 85 132.95261(22)# 61(6) ms β (?%) 133In 7/2−#
β, n (?%) 132In
134Cd 48 86 133.95764(32)# 65(15) ms β 134In 0+
This table header & footer:
  1. ^ mCd – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  10. ^ Believed to decay by β+β+ to 106Pd with a half-life over 1.1×1021 years
  11. ^ Believed to decay by β+β+ to 108Pd with a half-life over 4.1×1017 years
  12. ^ a b c d e f g Fission product
  13. ^ a b Primordial radionuclide
  14. ^ Believed to undergo ββ decay to 114Sn with a half-life over 9.2×1016 years

Cadmium-113m

[edit]
t½
(year)
Yield
(%)
Q
(keV)
βγ
155Eu 4.76 0.0803 252 βγ
85Kr 10.76 0.2180 687 βγ
113mCd 14.1 0.0008 316 β
90Sr 28.9 4.505   2826 β
137Cs 30.23 6.337   1176 βγ
121mSn 43.9 0.00005 390 βγ
151Sm 94.6 0.5314 77 β

Cadmium-113m is a cadmium radioisotope and nuclear isomer with a half-life of 14.1 years. In a normal thermal reactor, it has a very low fission product yield, plus its large neutron capture cross section means that most of even the small amount produced is destroyed in the course of the nuclear fuel's burnup; thus, this isotope is not a significant contributor to nuclear waste.

Fast fission or fission of some heavier actinides[which?] will produce 113mCd at higher yields.

References

[edit]
  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Cadmium". CIAAW. 2013.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Ratié, Gildas; Chrastný, Vladislav; Guinoiseau, Damien; Marsac, Rémi; Vaňková, Zuzana; Komárek, Michael (2021-06-01). "Cadmium Isotope Fractionation during Complexation with Humic Acid". Environmental Science & Technology. 55 (11): 7430–7444. Bibcode:2021EnST...55.7430R. doi:10.1021/acs.est.1c00646. ISSN 0013-936X. PMID 33970606. S2CID 234361430.
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301.