Jump to content

2021 in paleomammalogy

From Wikipedia, the free encyclopedia
(Redirected from 2021 in paleomammology)

List of years in paleomammalogy
In paleontology
2018
2019
2020
2021
2022
2023
2024
In paleobotany
2018
2019
2020
2021
2022
2023
2024
In arthropod paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoentomology
2018
2019
2020
2021
2022
2023
2024
In paleoichthyology
2018
2019
2020
2021
2022
2023
2024
In paleomalacology
2018
2019
2020
2021
2022
2023
2024
In reptile paleontology
2018
2019
2020
2021
2022
2023
2024
In archosaur paleontology
2018
2019
2020
2021
2022
2023
2024

This paleomammology list records new fossil mammal taxa that were described during the year 2021, as well as notes other significant paleomammology discoveries and events which occurred during 2021.

Afrotherians

[edit]

Macroscelidea

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Afrohypselodontus[1]

Gen. et 2 sp. nov

Valid

Senut & Pickford

Eocene (Bartonian-Priabonian)

 Namibia

A Afrohypselodontidae Macroscelidea.
The type species is A. minus; genus also includes A. grandis.

Eorhynchocyon[1]

Gen. et sp. nov

Valid

Senut & Pickford

Eocene (Bartonian-Priabonian)

 Namibia

A Rhynchocyonidae Macroscelidea
Type species is E. rupestris.

Namasengi[1]

Gen. et sp. nov

Valid

Senut & Pickford

Eocene (Bartonian-Priabonian)

 Namibia

An elephant shrew.
Type species is N. mockeae.

Oligorhynchocyon[2]

Gen. et sp. nov

Valid

Stevens et al.

Late Oligocene

Nsungwe Formation

 Tanzania

A Rhynchocyoninae elephant shrew.
Type species is O. songwensis.

Promyohyrax[1]

Gen. et sp. nov

Valid

Senut & Pickford

Eocene (Bartonian-Priabonian)

 Namibia

A myohyracine elephant shrew.
Type species is P. namibiensis.

Rukwasengi[2]

Gen. et sp. nov

Valid

Stevens et al.

Late Oligocene

Nsungwe Formation

 Tanzania

A myohyracine elephant shrew.
Type species is R. butleri.

Proboscidea

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Dagbatitherium[3]

Gen. et sp. nov

Valid

Hautier et al.

Eocene (Lutetian)

 Togo

A stem group Elephantiformes.
Type species D. tassyi.

Proboscidean research

[edit]
  • A study on changes of ecomorphological diversity of proboscideans throughout their evolutionary history is published by Cantalapiedra et al. (2021).[4]
  • Revision of the fossil material of deinotheres belonging to the genus Prodeinotherium from the Miocene Vallès-Penedès Basin (Spain) is published by Gasamans et al. (2021).[5]
  • A study on faunal and floral components of dung associated with juvenile mastodon remains from East Milford (Nova Scotia, Canada) dated to ~75,000 years BP, and on its implications of the knowledge of mastodon diet and environmental conditions in eastern Canada prior to the onset of the Wisconsin glaciation, is published by Cocker et al. (2021).[6]
  • A study on the growth patterns of limbs of the mastodons is published by Htun et al. (2021).[7]
  • Review of the state of knowledge regarding migratory behaviour of mastodons and mammoths is published by Bonhof & Pryor (2021).[8]
  • A study on the chemical composition of fossilized dental calculus from specimens of Notiomastodon platensis from Brazil, Argentina and Ecuador is published by Mothé et al. (2021), who report the discovery of the first fossilized oral bacterial communities associated with extinct proboscideans, confirming the parasitism between oral bacteria and N. platensis.[9]
  • A study on the phylogenetic affinities of Notiomastodon platensis and evolutionary history of proboscideans, based on data from ancient DNA from a specimen of N. platensis from the Arroyo del Vizcaíno site (Uruguay), is published by Baleka et al. (2021).[10]
  • Osteopontin, osteonectin and BMP-2 are identified for the first time in a bone of a specimen of Anancus arvernensis from the Pliocene Lagerstätte of Willershausen (Germany) by Schmidt-Schultz, Reich & Schultz (2021).[11]
  • A study on the age distribution and population structure of Palaeoloxodon huaihoensis from Penghu Channel (Taiwan), based on data from fossil teeth, is published by Kang, Lin & Chang (2021).[12]
  • A study on the morphology of the petrosal bone of Palaeoloxodon tiliensis is published by Liakopoulou, Theodorou & van Heteren (2021).[13]
  • A study on the dwarfing process in the evolutionary history of the Sicilian dwarf elephant, based on mitochondrial genome data, is published by Baleka et al. (2021).[14]
  • A study on bone histology and likely life history of the Sicilian dwarf elephant is published by Köhler et al. (2021).[15]
  • Tracks of straight-tusked elephants, including calves and juveniles, are described from the Upper Pleistocene site known as "Matalascañas Trampled Surface" (Spain) by Neto de Carvalho et al. (2021), providing information on the locomotion, social group structure and reproductive ecology of these proboscideans.[16]
  • Description of a nearly complete skeleton of a straight-tusked elephant calf from the Pleistocene of the Cova del Rinoceront, and a study on the implications of this specimen for the knowledge of the ontogeny of this elephant, is published by Palombo, Sanz & Daura (2021).[17]
  • A large elephant cranium similar to partial crania of early Pliocene Loxodonta adaurora is described from the Lonyumun Member of the Koobi Fora Formation near Ileret (Kenya) by Sanders et al. (2021), who interpret the anatomy of this skull as unexpectedly advanced for an elephant of its antiquity, and indicating that by the early Pliocene L. adaurora evolved adaptations in phase with feeding preference for C4 grasses.[18]
  • Van der Valk et al. (2021) report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene, and evaluate the implications of their finding for the knowledge of the evolutionary history of mammoths.[19]
  • A study on the morphology, antiquity, individual age and affinities of Yuka is published by Maschenko et al. (2021).[20]
  • New method allowing the characterization of the genetic sex for highly degraded samples of elephant DNA is presented by Aznar-Cormano et al. (2021), who also apply their method to woolly mammoth ancient DNA from the Late Pleistocene of Siberia.[21]
  • A study on the population history and extinction dynamics of the woolly mammoth in northern Siberia, based on radiocarbon and genetic data, is published by Dehasque et al. (2021).[22]
  • A study aiming to determine the mobility and range of an Arctic woolly mammoth living 17,100 years ago, as indicated by data from its tusk, is published by Wooller et al. (2021).[23]

Sirenia

[edit]

Sirenian research

[edit]
  • New sirenian specimen belonging to the genus Potamosiren is described from the Miocene Barzalosa Formation (Colombia) by Suarez et al. (2021), representing the earliest record of this genus reported to date, and providing new information on the evolutionary history of South American sirenians.[24]
  • A study on the morphology of the brain of a specimen of Dioplotherium from the middle Miocene Pirabas Formation (Brazil), and on the implications of this specimen for the knowledge of the evolution of the brain in sirenians, is published by Kerber & Moraes–Santos (2021).[25]
  • A study on the population history of the Steller's sea cow during the last several millions of years in the Bering Sea region, based on data from a genome of a historical specimen of this species, is published by Sharko et al. (2021), who interpret their findings as indicating that this species began to go extinct along the North Pacific coastline before the arrival of the first Paleolithic hunter-gatherers in the Beringia;[26] however, Campos et al. (2022) subsequently argued that the population of the Steller's sea cow including the specimen studied by Sharko et al. might not accurately represent the demographic history of the entire species across its former geographic distribution.[27][28]

Other afrotherians

[edit]

Miscellaneous afrotherian research

[edit]

Euarchontoglires

[edit]

Lagomorpha

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Alloptox gudrunae[30]

Sp. nov

Valid

Erbajeva & Bayarmaa

Early Miocene

 Mongolia

A pika.

Primates

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Homo bodoensis[31]

Nom. nov

Uncertain

Roksandic et al.

Middle Pleistocene

Bodo D'ar in Afar

 Ethiopia

A species of Homo closely related to Homo sapiens.
The validity of the new species name has been questioned.

Homo bodoensis

Homo longi[32]

Sp. nov

Valid

Ji & Ni in Ji et al.

Middle Pleistocene[33]

Upper Huangshan Formation

 China

A species of Homo closely related to Homo sapiens.[34]

Homo longi

Micropithecus chamtwaraensis[35]

Sp. nov

Valid

Pickford et al.

Miocene

Chamtwara Formation

 Kenya

A member of the family Dendropithecidae.

Pronycticebus cosensis[36]

Sp. nov

In press

Godinot & Vidalenc in Godinot et al.

Eocene

Cos, near Caylus (Quercy)

 France

A cercamoniine adapiform.

Protoadapis andrei[36]

Sp. nov

In press

Godinot & Vidalenc in Godinot et al.

Eocene

Cos, near Caylus (Quercy)

 France

A cercamoniine adapiform.

Quercyloris[36]

Gen. et sp. nov

In press

Godinot & Vidalenc in Godinot et al.

Eocene

 France

A member of the family Microchoeridae. Genus includes new species Q. eloisae.

Simonsius harujensis[37]

Sp. nov

Valid

Mattingly et al.

Early Oligocene

 Libya

A parapithecine.

General primate research

[edit]
  • A study on tooth morphology and probable diet of extinct strepsirrhines is published by Fulwood et al. (2021).[38]
  • A study on the changes in teeth and dentary shape through time in notharctines from the Eocene Willwood Formation (Wyoming, United States) is published by O'Leary (2021).[39]
  • A study on the evolution of dietary adaptations in the teeth of lemuriforms, based on data from fossil primates, extant strepsirrhines and recently extinct lemurs, is published by Fulwood et al. (2021).[40]
  • Marciniak et al. (2021) present a nuclear genome sequence of Megaladapis edwardsi, and evaluate the implications of their findings for the knowledge of the phylogenetic relationships of this species and its possible diet-related adaptations.[41]
  • A study on dietary niches of Miocene colobines Mesopithecus delsoni and M. pentelicus in southeastern Europe is published by Thiery et al. (2021).[42]
  • A study on the variations of the graminivorous behavior in fossil members of the genus Theropithecus, and on its probable impact on the evolution and extinction of these monkeys, is published by Fannin et al. (2021).[43]
  • DeMiguel et al. (2021) present a reconstruction of the local climate and environments through the densely sampled primate-bearing sequence of Abocador de Can Mata (Spain), and attempt to determine whether turnovers in Miocene primate assemblages from this sequence were correlated with environmental changes.[44]
  • Arias-Martorell et al. (2021) describe the first known postcranial specimen of Barberapithecus huerzeleri (a proximal radius) from the late Miocene of Castell de Barberà (Spain), and evaluate the implications of its anatomy for the knowledge of the locomotion of B. huerzeleri.[45]
  • A study on the morphology of the semicircular canals of the bony labyrinth of Epipliopithecus vindobonensis, and on its implications for the knowledge of the phylogenetic relationships of this species, is published by Urciuoli et al. (2021).[46]
  • A study on the orientation, proportions, and course of the carotid canal in Pliobates cataloniae, and on its implications for the knowledge of the ancestral carotid canal course in main anthropoid clades, is published by Bouchet et al. (2021).[47]
  • A study on the inner ear morphology and phylogenetic relationships of Hispanopithecus and Rudapithecus is published by Urciuoli et al. (2021).[48]
  • A study on the diversity of the Miocene dryopithecines from the Iberian Peninsula, as indicated by morphology of their molars, is published by Fortuny et al. (2021).[49]
  • A study on the mandibular shape variation and the degree of mandibular sexual size dimorphism in Ouranopithecus macedoniensis is published by Ioannidou et al. (2021).[50]
  • New femoral remains of Nacholapithecus kerioi are described by Pina et al. (2021), who evaluate the implications of these fossils for the knowledge of the distinctiveness of the femur of Nacholapithecus when compared with other Miocene and extant apes, and for the knowledge of the within-species anatomical variation and locomotion of this ape.[51]
  • A study on the age of putative hominin Trachilos footprints from Crete (Greece) is published by Kirscher et al. (2021).[52]
  • A study on the feeding ecology of Gigantopithecus blacki in Guangxi (China) during the earliest Pleistocene is published by Jiang et al. (2021).[53]
  • A study on the evolutionary history of the African hominid oral microbiome, based on data from dental biofilms of Late Pleistocene to present-day modern humans, Neanderthals and nonhuman primates, is published by Fellows Yates et al. (2021).[54][55][56]

General paleoanthropology

[edit]
  • A study on the evolution of the efficiency of thumb opposition in fossil hominins is published by Karakostis et al. (2021).[57]
  • A study on the evolutionary history of hominins and the evolution of body mass and encephalization in hominins is published by Püschel et al. (2021), who estimate that the origin of the genus Homo probably occurred between 4.30 and 2.56 million years ago.[58]
  • A study on footprints of bipedal mammals from Laetoli site A (Tanzania) is published by McNutt et al. (2021), who interpret these footprints as most likely produced by bipedal hominins, but also find them distinct from hominin footprints from Laetoli site G, and interpret them as evidence of presence of at least two hominin taxa at Laetoli, including a hominin with a distinct and presumably more primitive foot than Australopithecus afarensis.[59]
  • A study on the evolution of the hominin hand, with a focus on the hand of Ardipithecus ramidus, is published by Prang et al. (2021), who report that the hand morphology of A. ramidus was more closely aligned with chimpanzees and bonobos than generalized quadrupeds, and interpret their findings as indicating that hominins evolved from an ancestor with a positional repertoire including suspension, vertical climbing, and possibly knuckle walking.[60]
  • A study on the canine size dimorphism in Ardipithecus ramidus, interpreted as weak, comparable to that of modern humans, and significantly weaker than in the bonobo (the least dimorphic among extant great apes), is published by Suwa et al. (2021), who interpret this finding as evidence of abehavioral shift associated with comparatively weak levels of male aggression early in human evolution.[61]
  • A study on the age of the earliest deposits from the Swartkrans Cave (South Africa) is published by Kuman et al. (2021), who identify these deposits as containing the earliest known Oldowan stone tools and fossils of Paranthropus robustus in South Africa.[62]
  • A study comparing prevalence and patterns of tooth chipping in Paranthropus robustus and other extinct and extant primates is published by Towle, Irish & Loch (2021), who report that P. robustus experienced fewer tooth enamel chips than other hominin species and extant primates consuming hard objects, and interpret their findings as not corroborating that P. robustus regularly masticated hard foods.[63]
  • A bone tool is described from the Pleistocene site of Cooper's D (South Africa) by Hanon et al. (2021), who argue that this finding supports the interpretation of Paranthropus robustus as having the cognitive and manipulative abilities to develop and implement bone tools.[64]
  • Evidence of meat consumption by Early Pleistocene hominins is reported from the Cooper's D site by Hanon et al. (2021).[65]
  • A study on the skull of the Australopithecus specimen StW 573 ("Little Foot"), aiming to identify and assess the degree of preservation of craniodental microstructures that could contribute to the reconstruction of Australopithecus' biology, is published by Beaudet et al. (2021).[66]
  • A study on the anatomy of the shoulder girdle of the specimen StW 573, and on its implications for the knowledge of the evolution of the shoulder in hominins, is published by Carlson et al. (2021).[67]
  • Reconstruction of the environment at Allia Bay locality (Kenya) ca. 3.97 Ma, based on data from bovid fossils, is published by Dumouchel et al. (2021), who evaluate the implications of their findings for the knowledge of the range of environments occupied by Australopithecus anamensis.[68]
  • A study comparing upper and lower limb joint proportions of multiple species of Australopithecus, Paranthropus and Homo is published by Prabhat et al. (2021), who interpret their findings as indicating that, unlike other species of Australopithecus, A. afarensis was a committed terrestrial biped, and that this species evolved adaptations in limb joint proportions characteristic of bipedal locomotion independently of later Pleistocene hominins.[69]
  • A study on the biomechanical performance of the molars of Paranthropus robustus and Australopithecus africanus, and on likely dietary ecologies of these hominins, is published by Berthaume & Kupczik (2021).[70]
  • A study comparing the sacrum of the small-bodied, presumed female subadult Australopithecus africanus skeleton STS 14 to the large, alleged male adult StW 431 and a geographically diverse sample of modern humans and apes is published by Fornai et al. (2021), who interpret the morphological differences between the studied fossils as most likely to be the result of the presence of more than one species of Australopithecus at Sterkfontein Member 4.[71]
  • Vertebrae constituting near-complete lower back of Australopithecus sediba are described from Malapa (South Africa) by Williams et al. (2021), who interpret this finding as indicating that this hominin possessed a lower back consistent with lumbar lordosis and other adaptations to bipedalism, and that A. sediba used its lower back in both bipedal and arboreal positional behaviors.[72]
  • A study aiming to determine potential differences in cochlear morphology among fossil hominin taxa from southern Africa is published by Braga et al. (2021).[73]
  • A study on the speciation patterns in Pleistocene hominins, aiming to determine the phylogeographic patterns underlying the spread and morphological divergence of Pleistocene Homo populations, is published by Parins-Fukuchi (2021).[74]
  • A study on the adaptability of hominins living two million years ago to unstable environments, based on data from the Ewass Oldupa site (Olduvai Gorge, Tanzania), is published by Mercader et al. (2021).[75]
  • A study on the patterning and intensity of cut marks on animal bones from anthropogenic sites from Olduvai Gorge, and on their implications for the knowledge of carcass acquisition strategies of early Pleistocene hominins, is published by Domínguez-Rodrigo et al. (2021), who interpret their findings as invalidating hypotheses positing that carcasses of animals killed by other carnivores constituted a significant part of the diet of these hominins, and evaluate the impact of the adoption of carnivory by early members of the genus Homo on hominin evolution.[76]
  • A study on a partial mandible of an infant of an early member of the genus Homo from the Garba IV site of the Melka Kunture complex (Ethiopia) is published Le Cabec et al. (2021), who argue that their findings refute the interpretation of this individual as affected by amelogenesis imperfecta.[77]
  • The first dated Acheulean site from the Nefud Desert of northern Arabia is reported by Scerri et al. (2021).[78]
  • Groucutt et al. (2021) report multiple palaeolake sedimentary sequences with associated stone tool assemblages and fossil fauna from the Nefud Desert, and interpret their findings as evidence of at least five dispersals of hominins into the Arabian interior between 400 and 55 thousand years ago.[79]
  • A study aiming to reconstruct the trophic level of the Homo lineage that likely led to modern humans during the Pleistocene is published by Ben-Dor, Sirtoli & Barkai (2021).[80]
  • A study on the origins of the structurally modern human brain, based on data from endocasts of early members of the genus Homo from Africa, Georgia and Southeast Asia, is published by Ponce de León et al. (2021).[81]
  • A study aiming to determine the influence of environmental factors on the evolution of body and brain size of members of the genus Homo over the past ~1 million years is published by Will et al. (2021).[82]
  • A study on the feeding biomechanics of the holotype skull of Homo floresiensis is published by Cook et al. (2021).[83]
  • A study on the variation of the shape of the occipital and frontal bones in Homo erectus and Homo sapiens, aiming to assesses the hypothesis that similar evolutionary factors related to shared evolutionary history shaped cranial morphology in these species, is published by Baab (2021).[84]
  • A study on the ontogenetic development of the cranial vault in Homo erectus, aiming to determine whether the 1.5-Myr-old hominin calvaria KNM-ER 42700 from Ileret (Kenya) might be a juvenile H. erectus, is published by Baab et al. (2021).[85]
  • Hammond et al. (2021) trace the original location of the skull fragment KNM-ER 2598 (one of the oldest fossils attributed to Homo erectus) from East Turkana (Kenya), and describe additional hominin fossils which may represent the earliest postcrania attributable to H. erectus.[86]
  • A study on the affinities of two Early Pleistocene hominin fossils from Gona, Ethiopia is published by Baab et al. (2021), who interpret the studied fossils as the smallest adult H. erectus known from their respective time periods in Africa, and attempt to determine the causes of the differences in size and robusticity of the studied specimens.[87]
  • Dusseldorp & Lombard (2021) develop a framework to differentiate the technological niches of co-existing hominin species, and apply this framework to the coexistence of Homo naledi and Homo sapiens during the late Middle Pleistocene in southern Africa.[88]
  • Irish & Grabowski (2021) compare relative tooth size in Homo naledi and other Plio-Pleistocene and extant hominids, and evaluate its implications for the knowledge of the phylogenetic placement of H. naledi and dental evolutionary trends in hominins.[89]
  • Brophy et al. (2021) describe six hominin teeth and 28 cranial fragments from a new locality in the Dinaledi Subsystem of the Rising Star Cave system (South Africa), interpreted as consistent with a single immature individual belonging to the species Homo naledi and the first immature individual of this species preserving morphological details of the calvaria in association with dental evidence, and evaluate the implications of this finding for the knowledge of the maturation of H. naledi.[90]
  • Hershkovitz et al. (2021) report the discovery of fossils of archaic members of the genus Homo from the site of Nesher Ramla (Israel), possessing a distinctive combination of Neanderthal and archaic features, and interpret these fossils as likely representing late-surviving populations of Middle Pleistocene members of the genus Homo;[91] a study on the age of this site (dated to 140,000 to 120,000 years ago) and on stone tool assemblages associated with these fossils is published by Zaidner et al. (2021), who report that Middle Pleistocene members of the genus Homo mastered stone-tool production technologies previously known only among Homo sapiens and Neanderthals, and interpret this finding as indicative of cultural interactions between populations of Homo sapiens and Middle Pleistocene Homo.[92] The study of Hershkovitz et al. (2021) is subsequently criticized by Marom & Rak (2021), who argue that the Nesher Ramla hominin is more likely to be a Neanderthal.[93][94]
  • A study on the morphology and development of the scapulae in Homo antecessor individuals from the Gran Dolina site (Spain) is published by García-Martínez, Green & Bermúdez de Castro (2021).[95]
  • A study on the anatomy of the nasal region of hominins from the Sima de los Huesos site (Spain), and on it implications for the knowledge of the evolution of the nasal region of humans, is published by Schwartz, Pantoja-Pérez & Arsuaga (2021).[96]
  • Studies on the anatomy of teeth of hominins from the Sima de los Huesos site, and on its implications for the knowledge of the affinities of these hominins and the settlement of Europe during the Middle Pleistocene, are published by Bermúdez de Castro et al. (2021).[97][98]
  • A study on the variation in the supraorbital and orbital region of the Middle Pleistocene hominins, aiming to determine whether it matched the expectations of intraspecific variation, is published by White et al. (2021).[99]
  • New fossil material of Denisovans, associated with a wealth of lithics and faunal remains and representing the oldest securely dated evidence of Denisovans, is reported from the Denisova Cave (Russia) by Brown et al. (2021), who evaluate the implications of this finding for the knowledge of the material culture associated with Denisovans and their behavioural and environmental adaptations.[100]
  • Evidence of widespread Denisovan ancestry in contemporary human populations from Island Southeast Asia is presented by Teixeira et al. (2021), who find no evidence of substantial archaic hominin admixture compatible with known endemic hominins from Island Southeast Asia (Homo floresiensis and Homo luzonensis).[101]
  • A study on the stratigraphic position and absolute age of the Steinheim skull is published by Bloos (2021).[102]
  • McGrath et al. (2021) describe a method to create high-resolution 3D models of the tooth enamel surface using confocal profilometry, apply it to a sample of 17 Neanderthal and 18 Homo sapiens anterior teeth, and report evidence indicative of faster growth rates of anterior teeth in Neanderthals than in H. sapiens, as well as evidence that ratios of severity of linear enamel hypoplasia are not significantly different in Neanderthal sample and in H. sapiens sample as a whole.[103]
  • A study on the mobility patterns of Neanderthals and modern humans in Europe during the Middle-to-Upper Palaeolithic transition period, based on data from teeth from the Fumane Cave (Italy), is published by Richards et al. (2021).[104]
  • A study on the sound power transmission through the outer and middle ear and on the occupied bandwidth in Neanderthals is published by Conde-Valverde et al. (2021), who interpret their findings as indicating that the auditory and speech capacities of Neanderthals were similar to those in Homo sapiens.[105]
  • A study aiming to determine the factor which influenced the distinctive anatomy of the Neanderthal talus is published by Sorrentino et al. (2021).[106]
  • A study on the population history of Neanderthals, based on data from nuclear DNA from cave deposits in western Europe and southern Siberia dated to between approximately 200,000 and 50,000 years ago, is published by Vernot et al. (2021), who report evidence of two radiation events in Neanderthal history during the early part of the Late Pleistocene, and evidence of a population replacement in northern Spain approximately 100,000 years ago.[107]
  • Evidence of a contraction and shift of the ecological niche of culturally cohesive Neanderthal populations in Western Europe approximately 70,000 years ago is presented by Banks et al. (2021).[108]
  • A study on the fossil and archaeological collections from the Shuqba cave is published by Blinkhorn et al. (2021), who interpret the hominin tooth from this site as the southernmost known Neanderthal fossil known to date, and interpret the site as the first direct association between Neanderthals and Nubian Levallois technology, demonstrating that this technology is not an exclusive marker of Homo sapiens;[109] their conclusions are subsequently contested by Hallinan et al. (2022).[110][111]
  • Roebroeks et al. (2021) present paleoenvironmental and archaeological data from the Eemian locality of Neumark-Nord (Germany), interpreted as indicative of environmental impact by Neanderthals.[112]
  • A study on the prenatal and early postnatal growth of deciduous teeth of Neanderthals from Krapina (Croatia) is published by Mahoney et al. (2021).[113]
  • Leder et al. (2021) report the discovery of an at least 51,000-year-old engraved giant deer phalanx from the Unicorn Cave (Germany), and interpret this finding as evidence of presence of conceptual imagination in Neanderthals.[114]
  • Rothschild & Haeusler (2021) diagnose the Neanderthal skeleton La Chapelle-aux-Saints 1 as likely affected by brucellosis, making it the oldest known record of this disease in hominin evolution.[115]
  • A study on putative paintings on a large speleothem from the Cueva de Ardales (Spain) is published by Pitarch Martí et al. (2021), who interpret their findings as supporting the interpretation of the putative paintings were not the result of natural processes but rather were produced by Neanderthals, indicating that the pigments used in the paintings do not come from the outcrops of colorant material known in the cave, and indicating that the artistic activity occurred over an extended time span.[116]
  • A study on the age of the Neanderthal material from Spy (Belgium), and on its implications for the knowledge of the timing of Neanderthal disappearance from Northwest Europe, is published by Devièse et al. (2021);[117] the study is subsequently criticized by Van Peer (2021).[118][119]
  • A study on the diet of members of eastern Neanderthal populations from the Chagyrskaya Cave (Altai Mountains, Russia), based on data from carbon and nitrogen stable isotopes from bone collagen and microbotanical remains in dental calculus, is published by Salazar-García et al. (2021).[120]
  • A review of the knowledge of the origins of modern human ancestry is published by Bergström et al. (2021).[121]
  • A study on the age of the Middle and Later Stone Age artifacts and fossils from the Halibee member of the Upper Dawaitoli Formation (Middle Awash, Ethiopia) is published by Niespolo et al. (2021).[122]
  • Wilkins et al. (2021) present evidence from a rockshelter deposit in the southern Kalahari Basin indicative of intentional collection of non-utilitarian objects (calcite crystals) and ostrich eggshell by people living in the interior of southern Africa approximately 105,000 years ago.[123]
  • Bone tools dated to 120,000 to 90,000 years ago, including tools likely used for leather and fur working, and found in association with carnivore remains that were possibly skinned for fur, are described from the Contrebandiers Cave (Morocco) by Hallett et al. (2021).[124]
  • Partial skeleton of a roughly 2.5- to 3.0-year-old child dating to around 78,000 years ago is described from the Middle Stone Age deposits of the Panga ya Saidi cave site (Kenya) by Martinón-Torres et al. (2021), who interpret this finding as the oldest human burial in Africa reported to date.[125]
  • A study on ostrich eggshell bead variations in eastern and southern Africa over the past 50,000 years, and their relationships to population connections in Africa and their associations with climate changes, is published by Miller & Wang (2021).[126]
  • Genome-wide data from three individuals found in direct association with an Initial Upper Paleolithic assemblage of artefacts in Bacho Kiro cave (Bulgaria) is studied by Hajdinjak et al. (2021), who interpret their findings as indicating that the studied individuals belonged to a modern human migration into Europe that was not previously known from the genetic record, and that all three individuals had Neanderthal ancestors a few generations back in their family history.[127]
  • A study on local seasonal temperatures in the area of the Bacho Kiro cave in the Initial Upper Paleolithic, and on its implications for the knowledge whether early presence of Homo sapiens in Europe was contingent on warm climates, is published by Pederzani et al. (2021).[128]
  • A study on genome sequences generated from ~45,000 years old skull of a woman from Zlatý kůň (Czech Republic) is published by Prüfer et al. (2021), who interpret this individual as likely to be one of the earliest Eurasian inhabitants following the expansion out of modern humans of Africa, probably belonging to a population that formed before the populations that gave rise to present-day Europeans and Asians split from one another.[129]
  • Svensson et al. (2021) sequence the genome of a woman from Peștera Muierilor (Romania) who lived ~34,000 years ago, and interpret their findings as indicating that this woman belonged to a group that was a side branch to the ancestor of modern-day Europeans, as well as indicating that the genetic diversity in the populations of early anatomically modern humans in Europe was higher than previously assumed, and argue that the bottlenecks associated with loss of genetic diversity in non-Africans occurred during and after the Last Glacial Maximum rather than during the out-of-Africa migration.[130]
  • A study on human footprints from the Grotte de Cussac (France) is published by Ledoux et al. (2021), who interpret their findings as indicating that Gravettian people most likely wore footwear while moving through that cave.[131]
  • A study aiming to assess climate adaptations in face anatomy of Upper Paleolithic humans from Mladeč and Sungir is published by Stansfield et al. (2021).[132]
  • A study on the age of putative early remains of anatomically modern humans from caves in southern China is published by Sun et al. (2021), who interpret these fossils as much more recent than previously suggested, and argue that anatomically modern humans settled southern China no earlier than ca. 50 to 45 ka;[133] the study is subsequently criticized by Martinón-Torres et al. (2021) and Higham & Douka (2021).[134][135][136]
  • A study on environmental changes in Southeast Asia at the time of the Pleistocene turnovers of hominin species culminating with the arrival of Homo sapiens in the area, based on data from mammal fossils from five faunas from Vietnam and Laos whose ages ranged from MIS 6–5 to MIS 3–2, and aiming to determine how the climate changes that occurred during the Late Pleistocene might have influenced the adaptation of the first H. sapiens in the area, is published by Bacon et al. (2021).[137]
  • Two Late Pleistocene figurative paintings of Celebes warty pigs are reported from Maros-Pangkep (South Sulawesi, Indonesia) by Brumm et al. (2021), who determine the minimum age of one these paintings as at least 45.5 ka, making it likely one of the oldest if not the oldest record of the presence of anatomically modern humans in Wallacea, as well as the earliest known figurative artwork.[138]
  • Brumm et al. (2021) describe the first Pleistocene human skeletal remains from Sulawesi, dated to between 25 and 16 ka.[139]
  • A study on the ages of 16 motifs from the earliest known phase of rock paintings in the Australian Kimberley region is published by Finch et al. (2021).[140]
  • Human footprints dated to about 23,000 to 21,000 years ago are described from the White Sands National Park (New Mexico, United States) by Bennett et al. (2021);[141] their conclusions about the age of the studied footprints are subsequently contested by Madsen et al. (2022).[142][143]
  • A study aiming to evaluate whether Clovis fluted points were efficient weapon tips for hunting proboscideans is published by Eren et al. (2021).[144]
  • Evidence of human use of tobacco approximately 12,300 years ago is reported from the Wishbone site (Utah, United States) by Duke et al. (2021).[145]
  • Scerri et al. (2021) report two new sites in Senegal that date the end of the Middle Stone Age to around 11 ka, representing the youngest record of this cultural phase in Africa reported so far, and indicating that it persisted into the Holocene.[146]
  • Zhang et al. report what could be the discovery of the oldest rock art, likely dating back to ~169,000–226,000 years ago, much older than what was previously thought to be the earliest known drawing, made ~73,000[147] years ago. Children likely intentionally placed a series of hands and feet in mud. The findings could also be the earliest evidence of Hominins on the above 4000 meters a.s.l. high Tibetan plateau.[148][149][150]
  • Uwe Kirscher et al. report an improved dating of the earliest hominin-like footprints which were found in Crete, Greece: they are ~6.05 million years old, which is around the time of Orrorin – the previously earliest theorized potential species of Homininae.[151] The Trachilos footprints were first dated in 2017,[152] were found outside of Africa and resulted from upright walking–but not necessarily of pre-human apes.[153][154][155] However, already 11.6 million years ago Danuvius guggenmosi exhibited bipedalism in Germany.[156]

Rodentia

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Aliveria mojmiri[157]

Sp. nov

In press

Bonilla Salomón et al.

Early Miocene

 Czech Republic

A flying squirrel.

Asteromys puelche[158]

Sp. nov

Valid

Candela et al.

Deseadan

 Argentina

A member of Cavioidea.

Auroremys[159]

Gen. et comb. nov

In press

Vianey-Liaud & Marivaux

Eocene

 France

A member of the family Pseudosciuridae. The type species is "Ailuravus" subita Comte et al. (2012).

Balsayacuy[160]

Gen. et sp. nov

In press

Boivin et al.

Eocene

 Peru

A member of Caviomorpha. Genus includes new species B. huallagaensis.

Batomys cagayanensis[161]

Sp. nov

Valid

Ochoa et al.

Pleistocene

 Philippines

A cloud rat, a species of Batomys.

Caecocricetodon[162]

Gen. et sp. nov

Valid

Lu, Ni & Maridet

Early Oligocene

Caijiachong Formation

 China

A member of the family Cricetidae. The type species is C. yani.

Caribeomys[163]

Gen. et sp. nov

Valid

Marivaux et al.

Early Oligocene

 United States
( Puerto Rico)

A member of Geomorpha. Genus includes new species C. merzeraudi.

Carpomys dakal[161]

Sp. nov

Valid

Ochoa et al.

Pleistocene to late Holocene

 Philippines

A cloud rat, a species of Carpomys.

Chachapoyamys[160]

Gen. et sp. nov

In press

Boivin et al.

Eocene

 Peru

A member of Caviomorpha. Genus includes new species C. kathetos.

Crateromys ballik[161]

Sp. nov

Valid

Ochoa et al.

Pleistocene to late Holocene

 Philippines

A cloud rat, a species of Crateromys.

Ctenomys rusconii[164]

Sp. nov

Valid

De Santi et al.

Early Pleistocene

 Argentina

A tuco-tuco.

Daxneria[165]

Gen. et sp. nov

Valid

Van de Weerd, de Bruijn & Wessels

Late Oligocene

Kızılırmak, Güvendik

 Turkey

A member of Hystricognathi belonging to the subfamily Baluchimyinae. The type species is D. fragilis.

Eucricetodon oculatus[165]

Sp. nov

Valid

Van de Weerd, de Bruijn & Wessels

Late Oligocene

Kızılırmak, Güvendik

 Turkey

A member of the family Muridae belonging to the subfamily Eucricetodontinae.

Eucricetodon ruber[165]

Sp. nov

Valid

Van de Weerd, de Bruijn & Wessels

Late Oligocene

Kızılırmak

 Turkey

A member of the family Muridae belonging to the subfamily Eucricetodontinae.

Lophiomys imhausi maremortum[166]

Subsp. nov

In press

Lazagabaster et al.

Late Pleistocene

 Israel

A subspecies of the maned rat.

Megalomys camerhogne[167]

Sp. nov

Valid

Mistretta et al.

Holocene

 Grenada

A species of Megalomys.

Metacaremys[168]

Gen. et comb. et 2 sp. nov

Valid

Piñero et al.

Late Miocene to Miocene-Pliocene boundary

Cerro Azul Formation

 Argentina
 Bolivia

A member of Octodontoidea related to the family Octodontidae. The type species is "Cercomys" primitiva; genus also includes new species M. calfucalel and M. dimi.

Microscleromys[169]

Gen. et 2 sp. nov

Valid

Boivin & Walton in Boivin et al.

Miocene (Laventan)

Villavieja Formation

 Colombia
 Peru

A member of Chinchilloidea. The type species is M. paradoxalis; genus also includes M. cribriphilus. Originally described in the framework of Anne H. Walton's Ph.D. thesis from 1990, but formally named in 2021.

Microsteiromys[169]

Gen. et sp. nov

Valid

Boivin & Walton in Boivin et al.

Miocene (Laventan)

Villavieja Formation

 Colombia

A member of Erethizontoidea. The type species is M. jacobsi. Originally described in the framework of Anne H. Walton's Ph.D. thesis from 1990, but formally named in 2021.

Miochinchilla[170]

Gen. et 2 sp. nov

Valid

Croft et al.

Miocene

 Bolivia
 Chile

A member of the family Chinchillidae. Genus includes new species M. surirense and M. plurinacionalis.

Myomimus tanjuae[171]

Sp. nov

Valid

Bilgin et al.

Early Miocene

 Turkey

A species of Myomimus.

Noamys[172]

Gen. et sp. nov

In press

Ercoli et al.

Late Miocene

Guanaco Formation

 Argentina

A New World porcupine. Genus includes new species N. hypsodonta.

Nuyuyomys[169]

Gen. et sp. nov

Valid

Boivin & Walton in Boivin et al.

Miocene (Colloncuran-Laventan)

 Peru

A member of Erethizontoidea. The type species is N. chinqaska.

Pannoniamys[173]

Gen. et sp. nov

Valid

Van de Weerd et al.

Late Oligocene

 Serbia

A member of the family Spalacidae. The type species is P. paragovensis.

Paralonchothrix[174]

Gen. et comb. nov

Valid

Piñero et al.

Late Miocene

Loma de Las Tapias Formation

 Argentina
 Brazil

A member of the tribe Echimyini. Genus includes "Eumysops" ponderosus Rovereto (1914).

Qatranimys[175]

Gen. et sp. nov

Valid

Al-Ashqar et al.

Late Eocene

Jebel Qatrani Formation

 Egypt

A member of Phiomorpha belonging to the subfamily Phiocricetomyinae. The type species is Q. safroutus.

Reinomys[159]

Gen. et sp. nov

In press

Vianey-Liaud & Marivaux

Eocene

 France

A basal member of Theridomorpha. The type species is R. rhomboides.

Ricardomys[169]

Gen. et sp. nov

Valid

Boivin & Walton in Boivin et al.

Miocene (Laventan)

Villavieja Formation

 Colombia
 Peru

A member of Octodontoidea belonging to the family Adelphomyidae. The type species is R. longidens. Originally described in the framework of Anne H. Walton's Ph.D. thesis from 1990, but formally named in 2021.

Yuomys robustus[176]

Sp. nov

Valid

Gong, Li & Ni

Late Eocene

 China

A member of Ctenodactyloidea.

Rodent research

[edit]
  • New postcranial material of ischyromyids is described from the Erlian Basin (Inner Mongolia, China) by Fostowicz-Frelik, López-Torres & Li (2021), who interpret these fossils as indicative of a greater species richness of this group in northern China during the middle Eocene than was previously suggested by fossil teeth, as well as indicative of different paleoecology of Asian and North American ischyromyids.[177]
  • Description of the fossil material of dormice from the Oligocene localities of St-Martin-de-Castillon C (France) and Montalbán 1D (Spain), and a study on the phylogenetic relationships of extant and fossil dormice, is published by Lu et al. (2021).[178]
  • A study on changes in the brain over time, across phylogeny, and associated with locomotor behaviour in extant and fossil squirrels, aplodontiids and their close relatives is published by Bertrand et al. (2021).[179]
  • A study on the anatomy of the skull of Csakvaromys bredai, and on its implications for the knowledge of the evolution of ground squirrels, is published by Sinitsa, Čermák & Kryuchkova (2021).[180]
  • Redescription of "Orthomyctera" chapalmalense is published by Madozzo-Jaén, Pérez & Deschamps (2021), who transfer this species to the genus Dolichotis.[181]
  • A study on the anatomy of the postcranial skeleton of Neoepiblema, and on its implications for the knowledge of the paleobiology of this rodent, is published by Kerber et al. (2021).[182]
  • A study aiming to determine the ecological adaptation that allowed Trogontherium cuvieri to persist in northeast China in the Pleistocene, based on data from Early to Middle Pleistocene specimens from the Jinyuan Cave, is published by Yang et al. (2021).[183]
  • New fossil material of cricetodontine cricetids, providing evidence of the synonymy of the genera Lartetomys and Mixocricetodon, is described from the middle Miocene locality Höll (German part of the northern Alpine basin) by Prieto et al. (2021), who also study the evolution of the genus Lartetomys.[184]
  • Description of new fossil material of Olympicomys vossi from the Vorohué Formation (Argentina), and a study on the phylogenetic placement of this rodent, is published by Barbière et al. (2021).[185]
  • A study on the fossil record of the Miocene murine rodents from the Siwalik Group of Pakistan, evaluating its implications for the knowledge of the origin of the tribes Arvicanthini and Murini, is published by Kimura, Flynn & Jacobs (2021).[186]
  • A study on the phylogenetic affinities and evolutionary history of the Tenerife giant rat, as indicated by nuclear and mitochondrial data, is published by Renom et al. (2021).[187]

Artiodactyla

[edit]

Cetaceans

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Berardius kobayashii[188]

Sp. nov

Valid

Kawatani & Kohno

Miocene

Tsurushi Formation

 Japan

A beaked whale, a species of Berardius.

Isoninia[189]

Gen. et sp. nov

Valid

Godfrey, Gutstein & Morgan

Probably Miocene (Messinian)

Probably Eastover Formation

 United States
( North Carolina)

Possibly a member of the family Iniidae. The type species is I. borealis.

Kennedycetus[190]

Gen. et sp. nov

In press

Solis-Añorve et al.

Late Miocene

Trinidad Formation

 Mexico

A member of Balaenopteroidea. Genus includes new species K. pericorum.

Kentriodon sugawarai[191]

Sp. nov

Valid

Guo & Kohno

Miocene

Kadonosawa Formation

 Japan

Kogia danomurai[192]

Sp. nov

Valid

Benites-Palomino et al.

Late Miocene

Pisco Formation

 Peru

A species of Kogia.

Phiomicetus[193]

Gen. et sp. nov

Valid

Gohar et al.

Eocene (Lutetian)

Midawara Formation

 Egypt

A protocetid. Genus includes new species P. anubis.

Pliodelphis[194]

Gen. et sp. nov

Valid

Belluzzo & Lambert

Pliocene (Zanclean)

Kattendijk Sands

 Belgium

An oceanic dolphin. The type species is P. doelensis.

Cetacean research
[edit]
  • A study on the effects of incorporation of fossil taxa for inferences about phylogenetic relationships and evolutionary history of cetaceans is published by Lloyd & Slater (2021).[195]
  • A study on the evolution of the cetacean brain size is published by Waugh & Thewissen (2021).[196]
  • Kassegne et al. (2021) report the first discovery of a partial cetacean skull from middle Eocene deposits of Togo, identified as belonging to a protocetid close to Togocetus, and evaluate the implications of this specimen for the knowledge of the protocetid diversity in the Togolese phosphate basin.[197]
  • A tooth a possible member of the family Remingtonocetidae, potentially extending the range of this family across the Atlantic to eastern North America, is described from the Eocene of North Carolina by Uhen & Peredo (2021).[198]
  • Redescription of the Eocene cetacean "Platyosphys einori" is published by Davydenko et al. (2021), who interpret this taxon as a basilosaurid of uncertain phylogenetic placement, and report that it shows adaptations to life in water typical for modern whales but unique for the Eocene cetaceans.[199]
  • Revision of the stratigraphic, biogeographic and environmental distribution of Basilosaurus in North America is published by Smith et al. (2021).[200]
  • A study on the internal neurovascular anatomy of the holotype skull of Aetiocetus weltoni, and on its implications for the knowledge of the teeth to baleen transition in cetaceans, is published by Ekdale & Deméré (2022).[201]
  • Two partial skulls of members of the family Eurhinodelphinidae are described from the Miocene (Burdigalian) Chilcatay Formation (Pisco Basin, Peru) by Lambert et al. (2021), representing the first diagnostic remains attributable to this family reported from the Southern Hemisphere and the Pacific Ocean.[202]
  • New fossil material of Xiphiacetus cristatus is described from the Tortonian Diest Formation (Belgium) by Lambert & Goolaerts (2021), providing evidence of the survival of hyper-longirostrine dolphins into the early late Miocene.[203]
  • Partial skull of a member of the stem group of Delphinida is described from the Caujarao Formation (Venezuela) by Benites-Palomino et al. (2021), providing evidence that stem delphinidans were present in the southern Caribbean region during the early late Miocene.[204]
  • A study on the anatomy and evolution of the inner ear of late Oligocene–early Miocene marine platanistoids is published by Viglino et al. (2021).[205]
  • Redescription and revision of the taxonomic status of Preaulophyseter gualichensis is published by Paolucci et al. (2021).[206]
  • A study on the bite force of Zygophyseter varolai is published by Peri et al. (2021).[207]
  • Description of a new diminutive partial skull of a member of the genus Thalassocetus from the Miocene (Tortonian) of Antwerp (Belgium), providing new information on the facial morphology of this cetacean, and a study on the phylogenetic relationships of Thalassocetus is published by Alfsen, Bosselaers & Lambert (2021).[208]
  • A study on the evolution of the brain in cetaceans, based on data from fossils of baleen whales, is published by Mccurry et al. (2021).[209]
  • A study on the evolution of the length and mass in balaenids, based on data from extant and fossil taxa, is published by Bisconti, Pellegrino & Carnevale (2021).[210]
  • Partial mandible of an unequivocal member of the family Cetotheriidae is described from the upper Miocene Arenaria di Ponsano Formation (Italy) by Collareta et al. (2021), who evaluate the implications of this finding for the knowledge of the presence of cetotheriids in the Mediterranean.[211]
  • Bisconti et al. (2021) reconstruct virtual endocast of Marzanoptera tersillae, and interpret their findings as indicative of exceptionally high encephalization in this baleen whale.[212]
  • Two partial specimens of Cryptolepas rhachianecti, a barnacle known only to inhabit the skin of gray whales, are described from the Pleistocene-aged sediments from the Canoa Basin (Ecuador) by Taylor, Abella & Morales-Saldaña (2021), who interpret this finding as the first known evidence of a gray whale population having resided within the South Pacific.[213]
  • Revision of the fossil material assigned to the genus Plesiocetus by Pierre-Joseph van Beneden in the 19th century is published by Bisconti & Bosselaers (201).[214]

Other artiodactyls

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Amphimoschus xishuiensis[215]

Sp. nov

Valid

Li et al.

Miocene

Tiejianggou Formation

 China

A member of Bovoidea. Originally described as a species of Amphimoschus, but subsequently made the type species of the separate genus Dimidiomeryx by Sánchez et al. (2024).[216]

Chiyoumeryx[217]

Gen. et comb. et sp. nov

Valid

Mennecart et al.

Late Eocene

Shinao Formation

 China
 Kazakhstan?

A ruminant belonging to the group Tragulina and the family Lophiomerycidae. The type species is "Lophiomeryx" shinaoensis Miao (1982); genus also includes new species C. flavimperatoris, and possibly also "Lophiomeryx" turgaicus Flerow (1938).

Colbertchoerus[218]

Gen. et comb. nov

Valid

Prothero

Late Barstovian-early Clarendonian

Calvert Formation
Choptank Formation
Valentine Formation

 United States
( Colorado
 Maryland
 Nebraska)

A peccary. The type species is "Prosthennops" niobrarense Colbert (1935).

Erlianhyus[219]

Gen. et sp. nov

In press

Li & Li

Eocene

Irdin Manha Formation

 China

An even-toed ungulate positioned outside of the anthracotheriid-suoid-dichobunoid clade. Genus includes new species E. primitivus.

Etruscotherium[220]

Gen. et sp. nov

In press

Pickford

Miocene (Turolian)

 Italy

An anthracothere. Genus includes new species E. ribollaense.

Gangraia[221]

Gen. et sp. nov

Valid

Kostopoulos et al.

Late Miocene

Tüglu Formation

 Turkey

A member of the family Bovidae belonging to the subfamily Antilopinae. The type species is G. anatolica.

Geniokeryx nanus[222]

Sp. nov

In press

Ducrocq et al.

Late Eocene

Krabi Basin

 Thailand

An anthracothere.

Iberomeryx miaoi[217]

Sp. nov

Valid

Mennecart et al.

Late Eocene

Shinao Formation

 China

A chevrotain.

Mckennahyus[223]

Gen. et sp. nov

Valid

Prothero

Middle Clarendonian

Ash Hollow Formation

 United States
( Nebraska)

A peccary. The type species is M. parisidutrai.

Praesinomegaceros bakri[224]

Sp. nov

In press

Croitor et al.

Early Pleistocene

 Pakistan

A deer.

Rajouria[225]

Gen. et sp. nov

In press

Rana et al.

Middle Eocene

Subathu Group

 India

A member of the family Raoellidae. Genus includes new species R. gunnelli.

Stirtonhyus[218]

Gen. et comb. nov

Valid

Prothero

Early through early late Barstovian

Calvert Formation
Fleming Formation
Olcott Formation
Pawnee Creek Beds
Torreya Formation
Valentine Formation

 United States
( Colorado
 Florida
 Maryland
 Nebraska
 Texas)

A peccary. The type species is "Prosthennops" xiphidonticus Barbour (1925).

Tedfordhyus[218]

Gen. et comb. nov

Valid

Prothero

Early Hemingfordian to late Barstovian

Barstow Formation
Caliente Formation
Temblor Formation

 Panama
 United States
( California)

A peccary. The type species is "Cynorca" occidentale Woodburne (1969).

Webbochoerus[226]

Gen. et sp. nov

Valid

Prothero

Late Clarendonian

Love Bone Bed

 United States
( Florida)

A peccary. The type species is W. macfaddeni.

Other artiodactyl research
[edit]
  • A study on the diversity dynamics of cainotherioids through time is published by Weppe et al. (2021).[227]
  • A study on the basicranial morphology of Protoceras celer is published by Robson, Seale & Theodor (2021), who interpret their findings as indicating that protoceratid basicrania (unlike other regions of their skull) did not undergo drastic changes during their evolution.[228]
  • New fossil material of Paracamelus aguirrei is described from the Miocene locality Venta del Moro (Spain) by Caballero et al. (2021), who interpret P. aguirrei as a large camelid, comparable in size to Megacamelus merriami, Paracamelus gigas and Camelus knoblochi.[229]
  • A study on the taxonomic status of Selenogonus narinoensis is published by Gasparini, Moreno-Mancilla & Cómbita (2021), who interpret the holotype of this species as a specimen of Platygonus marplatensis or a related species, representing one of the northernmost South American records of the genus, and possibly one of the most ancient records of peccaries in South America.[230]
  • Cucchi et al. (2021) identify an insular lineage of wild boars from the Pre-Pottery Neolithic sites of Klimonas and Shillourokambos, originating from the Northern Levant and inhabiting Cyprus 11,000 to 9000 calibrated years BP, representing the oldest known population of insular ungulates introduced by humans in the Mediterranean Basin.[231]
  • A study aiming to determine whether the "law of constant extinction" proposed by Leigh Van Valen (stating that long and short-lived taxa have equal chances of going extinct) applies to the ruminants, taking the inherent biases of the fossil record into account, is published by Januario & Quental (2021).[232]
  • A study on the tooth wear and hypsodonty in ruminants from the early and middle Miocene of Kenya and Uganda, and on its implications for the knowledge of the ecological preferences of these ruminants, is published by Hall & Cote (2021).[233]
  • Description of new fossil material of Nalameryx savagei from the Oligocene Kargil Formation (India), and a study on the phylogenetic affinities of this ungulate, is published by Mennecart et al. (2021).[234]
  • Review of the fossil material attributed to Amphimoschus, and a reassessment of the validity of the species assigned to this genus, is published by Mennecart et al. (2021).[235]
  • A study comparing the ontogenetic trends in the limb bones of Pleistocene pronghorns Capromeryx minor and Capromeryx arizonensis, aiming to determine how ontogenetic slopes compare to the slope of dwarfing, is published by Prothero et al. (2021).[236]
  • Description of the anatomy of the postcranial skeleton of Capromeryx minor is published by Prothero, de Anda & Balassa (2021).[237]
  • Description of new fossil teeth of Bramatherium grande from the Late Miocene of Pakistan, providing new information on the variability of dental morphology in Late Miocene sivatherine giraffids, and a study on the phylogenetic relationships of this species is published by Khan, Babar & Ríos (2021).[238]
  • The first possible occurrence of Sivatherium from western Europe is reported from the lower Pliocene of Puerto de la Cadena (Spain) by Ríos et al. (2021).[239]
  • A study on the phylogenetic relationships of extant and fossil bovids is published by Calamari (2021), who attempts to identify novel hard-tissue synapomorphies for Bovidae and its tribes in order to determine the relationships of fossil members of this family.[240]
  • Redescription of the holotype skull of a putative boselaphine Proboselaphus watasei is published by Nishioka, Kohno & Kudo (2021), who reinterpret it as a skull of the sambar deer or a related species of deer, and evaluate the implications of this reinterpretation for the knowledge of the evolutionary history of boselaphines.[241]
  • Revision of cervids from the Late Miocene of Europe included in the subfamily Pliocervinae is published by Croitor (2021).[242]
  • Redescription and revision of the taxonomy of cervid fossils from the João Cativo and Lage Grande sites in the Brazilian Intertropical Region is published by Rotti et al. (2021), who identify fossils of members of the genus Morenelaphus from these sites, and evaluate the implications of the presence of giant deers for reconstructions of the climate and environment of the Brazilian Intertropical Region during the Pleistocene.[243]
  • New skull material of Pleistocene dwarf deers belonging to the genus Candiacervus, providing new information on the anatomy and island adaptations of these deers, is described from Crete (Greece) by Schilling & Rössner (2021).[244]
  • A study on the histology of the bone tissue in the holotype and paratype specimens of Candiacervus major is published by Palombo & Zedda (2021), who interpret the studied bones as belonging to an individual affected by pituitary gigantism (representing the first case of pituitary gigantism in an extinct mammal reported to date), consider the species C. major to be possibly synonymous with C. dorothensis, and consider it unlikely to represent an endemic species of an extraordinary large-sized deer.[245]
  • A study on the population dynamics and demise of the Irish elk, based on data Late Pleistocene and Holocene mitogenomes, is published by Rey-Iglesia et al. (2021)[246]
  • Description of the anatomy of the holotype of the Irish elk, revision of its subspecies, and a study on its evolutionary history, biogeography and functional morphology of its antlers, is published by Croitor (2021).[247]
  • Revision of the Messinian fossil record of bovids from Italy, with a focus on fossils from the Monticino Quarry (Brisighella, central Italy), is published by Pandolfi, Masini & Kostopoulos (2021), who transfer the species "Samotragus" occidentalis to the genus Oioceros.[248]
  • Redescription of the anatomy of the skull of Hezhengia bohlini, and a revision of the phylogenetic relationships of the Chinese late Miocene "ovibovines", is published by Shi & Deng (2021).[249]
  • A study comparing intraspecific variation and changes in the anatomy of the horn core, dentition and skull of Hezhengia bohlini during ontogeny is published by Shi et al. (2021).[250]
  • A study on the ecomorphology of Rusingoryx atopocranion, and on its implications for reconstructions of the environment of the Lake Victoria Basin during the late Pleistocene, is published by Kovarovic et al. (2021).[251]
  • A study on the diet of members of the tribe Reduncini from the Shungura Formation (Ethiopia) is published by Blondel et al. (2021).[252]
  • An overview of the phylogeny and evolution of the Late Pleistocene and Holocene species of Bison, focusing on data from ancient DNA studies, is published by Zver, Toškan & Bužan (2021).[253]
  • Revision of the European fossil record of bisons, with a focus on the Early-Middle Pleistocene transition in general and on fossil sites from the Vallparadís Composite Section (Terrassa, NE Iberian Peninsula) in particular, is published by Sorbelli et al. (2021).[254]
  • A study on the bone microanatomy of extant and fossil members of Hippopotamoidea, and on its implications for the knowledge of the ecology of extinct hippopotamoids, is published by Houssaye et al. (2021).[255]
  • Ducrocq et al. (2021) report the first discovery of the lower teeth of Siamotherium pondaungensis from the Eocene Pondaung Formation (Myanmar).[256]
  • Revision of the fossil material of hippopotamids from the uppermost Miocene deposits of Gravitelli (Sicily, Italy), and a study on the implications of these fossils for the knowledge of the dispersal of hippopotamids into the Mediterranean area around the Mio-Pliocene transition, is published by Martino et al. (2021).[257]
  • The earliest record of Hippopotamus from the United Kingdom known to date (a tooth of a member or a relative of the species Hippopotamus antiquus) is reported from the Early Pleistocene mammal assemblage from Westbury Cave (Somerset) by Adams, Candy & Schreve (2021), who interpret this finding as likely evidence of a warm period that has not been recognized previously in the British Quaternary record.[258]
  • A study on the morphology of the carpal bones of the Cyprus dwarf hippopotamus, and on its implications for the knowledge of the locomotion of this hippopotamus, is published by Georgitsis, Liakopoulou & Theodorou (2021).[259]
  • A study on the phylogenetic affinities of the Cyprus dwarf hippopotamus, based on data from ancient DNA, is published by Psonis et al. (2021).[260]
  • Orliac & Thewissen (2021) describe the endocranial cast of Indohyus indirae, and evaluate its implications for the knowledge of the evolution of the anatomy of the cetacean brain.[261]
  • Revision of the fossil material of Sylvochoerus woodburnei, Waldochoerus bassleri and Surameryx acrensis is published by Gasparini et al. (2021), who consider the fossils of these ungulates to be more likely of Quaternary rather than Miocene age, reinterpret S. woodburnei and W. bassleri as junior synonyms of extant peccary species, and reinterpret S. acrensis as described on the basis of fossil material of a deer rather than a palaeomerycid.[262]
  • A study on the morphology of the basicranium and bony labyrinth of Leptoreodon major is published by Robson, Ludtke & Theodor (2021).[263]

Carnivorans

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Ammitocyon[264]

Gen. et sp. nov

Valid

Morales et al.

Late Miocene

Cerro de los Batallones

 Spain

A bear dog. Genus includes new species A. kainos.

Canis orcensis[265]

Sp. nov

Valid

Martinez-Navarro et al.

Early Pleistocene

 Spain

A species of Canis.

Cynelos jitu[266]

Sp. nov

Valid

Morlo et al.

Early Miocene

Bakate Formation

 Kenya

A bear dog.

Dehmicyon[267]

Gen. et comb. nov

Valid

Morales et al.

Early Miocene

 Czech Republic
 Germany

A bear dog. The type species is "Amphicyon" schlosseri Dehm (1950).

Dunictis[268]

Gen. et comb. nov

Valid

Morales & Pickford

Early Miocene

 Kenya
 Namibia

A member of the family Viverridae. The type species is "Leptoplesictis" senutae Morales, Pickford & Salesa (2008); genus also includes "Leptoplesictis" rangwai Schmidt-Kittler (1987) and possibly also "Leptoplesictis" mbitensis Schmidt-Kittler (1987) and "Leptoplesictis" namibiensis Morales, Pickford & Salesa (2008).

Eomellivora moralesi [269]

Sp. nov

In press

Alba et al.

Miocene

 Spain

A mellivorine mustelid.

Eucyon khoikhoi[270]

Sp. nov

Valid

Valenciano, Morales & Govender

Early Pliocene

 South Africa

Eusmilus adelos[271] Sp. nov Valid Paul Zachary Barrett Early Oligocene White River Formation  United States( Wyoming) A nimravid.

Forsythictis[268]

Gen. et sp. et comb. nov

Valid

Morales & Pickford

Middle Miocene

 France
 Germany
 Spain

A member of the family Viverridae. The type species is F. ibericus; genus also includes "Stenogale" aurelianensis Schlosser (1889) and "Herpestes (Leptoplesictis) aurelianensis" atavus Beaumont (1973; raised to the rank of a separate species F. atavus).

Gansuyaena[272]

Gen. et sp. nov

Valid

Galiano et al.

Miocene

Linxia Basin

 China

A hyena belonging to the subfamily Protelinae. The type species is G. megalotis.

Machairodus lahayishupup[273]

Sp. nov

Valid

Orcutt & Calede

Miocene (Hemphillian)

 United States
( Idaho
 Oregon)

Magnotherium[274]

Gen. et sp. nov

In press

Rahmat et al.

Late Miocene

St. Marys Formation

 United States
( Maryland)

A monachine earless seal. Genus includes new species M. johnsii.

Oaxacagale[275]

Gen. et sp. nov

In press

Ferrusquía-Villafranca & Wang

Paleogene

Yolomécatl Formation

 Mexico

A member of the family Mustelidae. Genus includes new species O. ruizi.

Palaeogale evanoffi[276]

Sp. nov

Valid

Welsh

Orellan

Brule Formation

 United States
( South Dakota)

Paludocyon[267]

Gen. et comb. nov

Valid

Morales et al.

Early Miocene

 Czech Republic

A bear dog. The type species is "Pseudocyon" bohemicus Schlosser (1899).

Parailurus tedfordi[277]

Sp. nov

Valid

Wallace & Lyon

Pliocene (Blancan)

 United States
( Washington)

A member of the family Ailuridae. Published online in 2021, but the copyright is listed as © 2022.

Planopusa[278]

Gen. et sp. nov

Valid

Koretsky & Rahmat

Middle-late Miocene

 Ukraine

An earless seal belonging to the subfamily Phocinae. The type species is P. semenovi.

Protocyon orocualensis[279]

Sp. nov

Valid

Ruiz-Ramoni, Wang & Rincón

Late Pliocene/Early Pleistocene

 Venezuela

A canid belonging to the subtribe Cerdocyonina. Announced in 2021; the final version of the article naming it was published in 2022.

Sonitictis[280]

Gen. et sp. nov

In press

Wang et al.

Miocene

Tunggur Formation

 China

A member of the family Mustelidae, possibly belonging to the subfamily Mellivorinae. Genus includes new species S. moralesi.

Vishnuonyx neptuni[281]

Sp. nov

Valid

Kargopoulos et al.

Miocene

 Germany

An otter.

Vulpes rooki[282]

Sp. nov

Valid

Bartolini Lucenti

Pliocene

Yushe Basin

 China

A fox, a species of Vulpes

Carnivoran research

[edit]
  • A study on late Oligocene and middle Miocene carnivoran teeth from Thailand is published by de Bonis et al. (2021), who report the oldest occurrence of the family Ursidae in southern Asia (a specimen of Cephalogale from the late Oligocene) and a new viverrid (a specimen of Semigenetta from the middle Miocene), and interpret these fossils as evidence of stratigraphic correlations of the MP29 and MN7–8 fossil sites in Europe with Southeast Asian localities.[283]
  • Revision of the fossil material from the Pliocene locality Çalta-1 (Turkey) attributed to Vulpes galatica is published by Bartolini-Lucenti & Madurell-Malapeira (2021), who evaluate the implications of these fossils for the knowledge of the evolution of members of the genus Vulpes in the Pliocene and Early Pleistocene, and interpret V. galatica as a junior synonym of Vulpes beihaiensis.[284]
  • A study on the evolutionary history of dire wolves, based on data from five genomes sequenced from sub-fossil remains, is published by Perri et al. (2021), who interpret their findings as indicating that dire wolves were members of a highly divergent lineage that split from living canids around 5.7 million years ago, and recommend transferring them to the separate genus Aenocyon.[285]
  • Bartolini-Lucenti et al. (2021) describe fossil material of Canis (Xenocyon) lycaonoides from the Dmanisi site (Georgia), representing the first record of a large-sized canid from this site reported to date, and attempt to determine the role played by social behaviour in the geographic expansion of canids and hominins.[286]
  • The earliest record of a wild dog belonging to the subgenus Xenocyon in Western Europe known to date, similar to Canis (Xenocyon) falconeri, is reported from the Roca-Neya site (France) by Bartolini-Lucenti & Spassov (2021), who also attempt to determine the dietary preferences of members of this subgenus.[287]
  • A study on the phylogenetic placement and evolutionary history of the Sardinian dhole, based on data from the genome of a ca-21,100-year-old specimen, is published by Ciucani et al. (2021).[288]
  • A study on changes of diets of gray wolves from the Yukon Territory (Canada) from the Pleistocene to the Holocene is published by Landry et al. (2021).[289]
  • A study on changes of diets of British wolves over the course of the Pleistocene is published by Flower, Schreve & Lamb (2021).[290]
  • Lahtinen et al. (2021) argue that the differences between dietary constraints of wolves and humans enabled dog domestication in harsh environments across northern Eurasia in the Late Pleistocene, as the prey species of wolves have protein ratios over the limit that humans can consume, which resulted in Upper Paleolithic hunter-gatherers having excess protein from their prey available to feed to captured/pet wolves.[291]
  • A study on the processes driving the early phases of dog domestication, based on data from canid remains from the Magdalenian cave site of Gnirshöhle (Hegau Jura, Germany), is published by Baumann et al. (2021).[292]
  • Perri et al. (2021) compare population genetic results of humans and dogs from Siberia, Beringia and North America, and interpret their findings as indicating that dogs were domesticated in Siberia by ~23,000 years ago, and subsequently accompanied the first people into the Americas.[293]
  • Da Silva Coelho et al. (2021) report a complete mitochondrial genome of an early dog from southeast Alaska, dated to approximately 10 150 calibrated years BP, and interpret this specimen as an early-branching precontact dog and evidence that initial human and dog migration into the Americas occurred together along the North Pacific coastal route.[294]
  • Description and a study on the functional anatomy of the forelimb of Amphicynodon leptorhynchus, aiming to infer probable lifestyle of this carnivoran, is published by Gardin et al. (2021).[295]
  • A study on the evolutionary history and past distributional patterns of the giant panda, based on data from ecological niche modelling, phylogeography and fossil record, is published by Luna-Aranguré & Vázquez-Domínguez (2021).[296]
  • Fossil evidence from the Shuanghe Cave (China) indicating that giant pandas had evolved a pseudo-thumb comparable to that of the modern pandas as early as 100,000 years ago is presented by Wang et al. (2021).[297]
  • Pedersen et al. (2021) report the retrieval of low-coverage environmental genomes from American black bear and giant short-faced bear from Late Pleistocene cave sediments from northern Mexico, as well as lower-coverage giant short-faced bear genomes obtained from fossils from Yukon (Canada), and evaluate the utility of these genomes for population genomic and phylogenetic studies of Late Pleistocene bears.[298]
  • Barlow et al. (2021) report the recovery of the genome of a 360,000-year-old cave bear from Kudaro 1 cave (South Ossetia), representing the oldest genome from a non-permafrost environment reported to date, and evaluate the implications of this finding for the knowledge of the evolution of cave bears.[299]
  • A study on the morphological variability and evolution of lower incisors of cave bears from the Middle and Late Pleistocene of Caucasus and Urals is published by Gimranov, Kosintsev & Baryshnikov (2021).[300]
  • A study on ancient DNA obtained from a Pleistocene brown bear remains from Honshu Island, evaluating its implications for the knowledge of the evolutionary history of extinct brown bears from the Japanese Archipelago, is published by Segawa et al. (2021).[301]
  • A study on the phylogenetic placement of barbourofelines within Carnivora, and on the evolution of sabertooth adaptations amongst carnivorans, is published by Barrett, Hopkins & Price (2021).[302]
  • Revision of the fossil record of African barbourofelines belonging to the tribe Afrosmilini is published by Werdelin (2021).[303]
  • Description of new fossil material of hyenas from the Miocene Hammerschmiede locality (Germany), and a study on the implications of these fossils for the knowledge of the evolutionary history of hyenas in Europe, is published by Kargopoulos et al. (2021).[304]
  • Three fragments of a skull of Pachycrocuta brevirostris are described from the Jinyuan Cave (Dalian, China) by Liu et al. (2021), who interpret this specimen as the largest skull of a member of this species reported so far, and evaluate its implications for the knowledge of the evolutionary history of this species.[305]
  • Description of fossil material of Pachycrocuta brevirostris from the late Early Pleistocene site of Nogaisk, representing the first record of this species from Ukraine, and a study on the evolution of this species in Eurasia is published by Marciszak et al. (2021).[306]
  • Revision of the European fossil record of Pachycrocuta brevirostris, and of the whole Epivillafranchian and Galerian record of hyenas from Europe, is published by Iannucci et al. (2021).[307]
  • A study on the diversity on North American hyenas belonging to the genus Chasmaporthetes is published by Pérez-Claros, Coca-Ortega & Werdelin (2021).[308]
  • A study on the evolutionary history of the genus Crocuta, based on data from near-complete mitochondrial genomes sequenced from two Late Pleistocene cave hyena skulls from northeastern China, is published by Hu et al. (2021).[309]
  • A study on the evolution of the mandible shape in early machairodontines, based on data from fossils of Promegantereon ogygia and Machairodus aphanistus from the Batallones localities in Spain, is published by Chatar et al. (2021).[310]
  • Fossil material of Dinofelis, representing the smallest specimens belonging to this genus reported to date (with the size of a large Eurasian lynx or small puma), is described from the latest Pliocene-earliest Early Pleistocene (ca. 2.5 million years old) Guefaït-4 site (Morocco) by Madurell-Malapeira et al. (2021), who argue that the overall small dimensions of the studied specimens not ascribable to sexual dimorphism or interspecific variability, and interpret these specimens as representing a previously unknown lineage or species of Dinofelis.[311]
  • A study on the dietary ecology of Homotherium serum, based on data from fossil specimens from the Friesenhahn Cave (Texas, United States), is published by DeSantis et al. (2021).[312]
  • Revision of the fossil material of Megantereon from the late Early Pleistocene to Middle Pleistocene strata in China is published by Li & Sun (2021).[313]
  • An association of two subadult and one adult specimen of Smilodon fatalis is reported from the Pleistocene Tablazo Formation (Ecuador) by Reynolds, Seymour & Evans (2021), who interpret the subadult specimens as likely to be siblings, and evaluate the implications of this finding for the knowledge of the life history of S. fatalis.[314]
  • A study on a pathological pelvis and associated right femur of a specimen of Smilodon fatalis from the La Brea Tar Pits (California, United States) is published by Balisi et al. (2021), who diagnose this specimen as affected by hip dysplasia, and evaluate the implications of this specimen for the knowledge of social strategies of S. fatalis.[315]
  • Fossil material of the Iberian lynx, extending known paleobiogeographical distribution of this species and representing the largest sample of lynx fossils reported from Europe to date, is described from the Late Pleistocene Ingarano site (southern Italy) by Mecozzi et al. (2021).[316]
  • A study on the impact of the climatic transition from the Pleistocene to the Holocene on cougars and bobcats, based on data from fossil from the La Brea Tar Pits, is published by Balassa, Prothero & Syverson (2021).[317]
  • Chi et al. (2021) report the discovery of fossil teeth from the Longshia-dong Cave, interpreted as the first known record of leopards from the Late Pleistocene of Taiwan.[318]
  • Preliminary description of two mummified cave lion cubs from Sakha (Russia) is published by Boeskorov et al. (2021).[319]
  • A study on changes of the range of the lion during the late Pleistocene and Holocene is published by Cooper et al. (2021).[320]
  • A study comparing the carnivore guild from the Dmanisi site with contemporary assemblages from European, Asian, and African sites is published by Bartolini-Lucenti et al. (2021).[321]
  • A study on the habitat and potential prey preferences of Smilodon populator, Protocyon troglodytes and Arctotherium wingei from the Brazilian Intertropical Region, based on data from isotopic studies, is published by Dantas et al. (2021).[322]
  • Evidence from mitochondrial genome data indicative of multiple waves of dispersal of lions and brown bears into North America across the Bering Land Bridge, coinciding with glacial periods of low sea levels, is presented by Salis et al. (2021).[323]

Chiroptera

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Afrillonura[324]

Gen. et sp. nov

In press

Rosina & Pickford

Miocene

 Namibia

A member of the family Emballonuridae. Genus includes new species A. namibensis.

Altaynycteris[325]

Gen. et sp. nov

Unavailable

Jones et al.

Early Eocene. The name is not available under the ICZN Art. 8.5.3. as the electronic publication lacks evidence of registration in ZooBank.

Junggar Basin

 China

Genus includes new species A. aurora.

Chiropteran research

[edit]

Eulipotyphla

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Actinyctia[330]

Gen. et sp. nov

Valid

Hooker

Late Eocene–Early Oligocene

Solent Group

 United Kingdom

A nyctitheriid.
Type species A. bulbodens.

Amphidozotherium gassoni[330]

Sp. nov

Valid

Hooker

Late Eocene–Early Oligocene

Solent Group

 United Kingdom

A Nyctitheriid.

Cheilonyctia[330]

Gen. et sp. nov

Valid

Hooker

Late Eocene–Early Oligocene

Solent Group

 United Kingdom

A Nyctitheriid.
Type species C. lawsoni.

Euronyctia curranti[330]

Sp. nov

Valid

Hooker

Late Eocene–Early Oligocene

Solent Group

 United Kingdom

A Nyctitheriid.

Euronyctia plesiolambda[330]

Sp. nov

Valid

Hooker

Late Eocene–Early Oligocene

Solent Group

 United Kingdom

A Nyctitheriid.

Indonyctia[331]

Gen. et sp. nov

In press

Das, Carolin & Bajpai

Early Eocene

Cambay Shale

 India

A Nyctitheriid.
Type species I. cambayensis.

Scraeva yulei[330]

Sp. nov

Valid

Hooker

Late Eocene–Early Oligocene

Solent Group

 United Kingdom

A Nyctitheriid.

Eulipotyphlan research

[edit]
  • A study on morphological changes in molar crown morphology of three lineages of stem erinaceid eulipotyphlans from the Bighorn Basin (Wyoming, United States), aiming to determine whether the evolution of these mammals was significantly affected by the Paleocene–Eocene Thermal Maximum, is published by Vitek et al. (2021).[332]
  • A study on the mandible shape diversity in Late Pleistocene to Holocene shrews from the El Harhoura 2 site (Morocco), evaluating the relationship between their morphology and environment, is published by Terray et al. (2021).[333]

Notoungulata

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Boleatherium[334]

Gen. et sp. nov

Valid

Vera, Scarano & Reguero

Miocene

Cerro Boleadoras Formation

 Argentina

A member of Interatheriinae. Genus includes new species is B. praeludium.

Colbertia falui[335]

Sp. nov

Valid

Fernández et al.

Eocene (Casamayoran)

Quebrada de los Colorados Formation

 Argentina

A member of Typotheria.

Nanolophodon[336]

Gen. et sp. nov

Valid

Castro et al.

Early Eocene

Itaboraí Basin

 Brazil

A basal notoungulate. Genus includes new species N. tutuca.

Neoicochilus[337]

Gen. et comb. nov

Valid

Fernández, Fernicola & Cerdeño

Santacrucian

Santa Cruz Formation

 Argentina

A member of the family Interatheriidae; a new genus for "Icochilus" undulatus.

Teushentherium[338]

Gen. et sp. nov

Valid

Martínez et al.

Deseadan

Sarmiento Formation

 Argentina

A member of Toxodonta. The type species is T. camaronensis.

Notoungulate research

[edit]
  • A study on the evolution of the body size and hypsodonty in notoungulates is published by Solórzano & Núñez-Flores (2021).[339]
  • A study on cranial endocasts of notoungulates, and on the implications of endocranial data for the knowledge of the phylogenetic relationships of notoungulates, is published by Perini et al. (2021).[340]
  • A study on the enamel microstructure in permanent and deciduous teeth of specimens of Toxodon, evaluating the evolutionary and functional implications of histological enamel features in the studied teeth, is published by Braunn, Ferigolo & Ribeiro (2021).[341]
  • A study on the shape and size of molars in nine species of Protypotherium, aiming to determine the impact of climate change in South America during Miocene on the evolution of this genus, is published by Scarano, Vera & Reguero (2021).[342]
  • A study on the morphology of deciduous and permanent teeth of Interatherium and Protypotherium, reevaluating the diagnostic dental characteristics used to describe interatheriine taxa, is published by Fernández, Fernicola & Cerdeño (2021), who transfer the species Eudiastatus lingulatus to the genus Protypotherium.[343]
  • A study on the shape and evolution of the snout in mesotheriid notoungulates, and on its implications for the knowledge of the dietary preferences in mesotheriids, is published by Ercoli & Armella (2021).[344]
  • A study on tooth size variations within assemblages of Tremacyllus is published by Armella (2021).[345]

Perissodactyla

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Elasmotherium primigenium[346]

Sp. nov

In press

Sun, Deng & Jiangzuo

Late Miocene

 China

Eoazara[347] Gen. et sp. nov Valid Geraads & Zouhri Late Miocene Ouarzazate Basin  Morocco A rhinoceros in the subfamily Elasmotheriinae. The type species is E. xerrii.

Eomoropus meridiorientalis[222]

Sp. nov

In press

Ducrocq et al.

Late Eocene

Krabi Basin

 Thailand

An eomoropid chalicotherioid.

Gobicerops[348] Nom. nov Bai et al. Early Eocene Arshanto  China A rhinocerotoid belonging to the family Forstercooperiidae; a replacement name for Gobioceras Bai et al. (2019)

Leptolophus cuestai[349]

Sp. nov

Valid

Perales-Gogenola et al.

Late Eocene

Miranda-Treviño Basin

 Spain

A member of the family Palaeotheriidae.

Leptolophus franzeni[349]

Sp. nov

Valid

Perales-Gogenola et al.

Late Eocene

Miranda-Treviño Basin

 Spain

A member of the family Palaeotheriidae.

Miodiceros[350]

Gen. et comb. nov

Valid

Giaourtsakis

Miocene

 Bulgaria
 Greece
 Iran
 Turkey

A rhinoceros belonging to the tribe Rhinocerotini and the subtribe Dicerotina. The type species is "Atelodus" neumayri Osborn (1900).

Nesorhinus[351]

Gen. et comb. nov

Valid

Antoine et al.

Pleistocene

 Philippines
 Taiwan

A rhinoceros. Genus includes "Rhinoceros" philippinensis von Koenigswald (1956) and "Rhinoceros sinensis" hayasakai Otsuka & Lin (1984; raised to the rank of a separate species N. hayasakai).

Paraceratherium linxiaense[352]

Sp. nov

Valid

Deng et al.

Oligocene

Jiaozigou Formation

 China

A paracerathere.

Pliorhinus[353]

Gen. et comb. nov

Valid

Pandolfi et al.

Early Pliocene

A rhinoceros. The type species is "Rhinoceros" megarhinus de Christol (1834); genus also includes "Dicerorhinus" miguelcrusafonti Guérin & Santafé-Llopis (1978).

Ronzotherium heissigi[354]

Sp. nov

Valid

Tissier, Antoine & Becker

Oligocene

 France
  Switzerland

A rhinoceros.

Perissodactyl research

[edit]
According to a genetic analysis of Pablo Librado et al., today's domestic horses descend from the lower Volga-Don region, Russia.[355]
  • Description of new fossil material of Lophiaspis maurettei from the early Eocene of France, and a study on the phylogenetic relationships of this species and lophiodontids in general, is published by Vautrin et al. (2021).[356]
  • New fossil material of chalicotheres, indicating that the fossil record of the genus Ancylotherium in Africa dates back to ca. 10 Ma, is described from the upper Miocene Nakali Formation (Kenya) by Handa et al. (2021).[357]
  • A study on the variation of shapes in forelimb bones and its relationship with body mass in members of Rhinocerotoidea throughout their evolutionary history is published by Mallet et al. (2021).[358]
  • Revision of the fossil material of rhinoceroses from the Rotem and Yeroham basins in the Negev (Israel), including fossils of a member of the genus Brachypotherium belonging or related to the species B. snowi, and the only record of Gaindatherium found outside the Sivalik Hills, is published by Pandolfi et al. (2021), who evaluate the implications of these fossils for the knowledge of the biogeography and dispersal of rhinoceroses during the early Neogene.[359]
  • New fossil material of Aprotodon lanzhouensis is described from the Miocene Xianshuihe Formation (China) by Li et al. (2021).[360]
  • A study on the ecology and the eventual niche partitioning of rhinocerotids from the Miocene locality of Béon 1 (France) is published by Hullot et al. (2021).[361]
  • The head of the genus Elasmotherium is reinterpreted by Titov et al. (2021), who cast doubt on the popular interpretation that it carried a massive horn, instead hypothesizing that it supported a resonating chamber.[362]
  • New fossil material of Stephanorhinus kirchbergensis is described from localities in West Siberia and East Siberia by Lobachev et al. (2021), expanding known geographic distribution of this species and providing new information on its ecology, variability, and evolution.[363]
  • A study on the ecology of the woolly rhinoceros, based on data from carbon and nitrogen stable isotopes from bone and tooth specimens and from mitochondrial DNA sequences, is published by Rey-Iglesia et al. (2021).[364]
  • A study on range changes and environment of the woolly rhinoceros in west Beringia (northeast Asia) during the Late Pleistocene is published by Puzachenko et al. (2021).[365]
  • A study on the evolutionary history of rhinocerotids, based on data from genomes of extant and extinct taxa, is published by Liu et al. (2021).[366]
  • Revision of the fossil material of brontotheres from Duchesnean and early Chadronian mammal faunas from the Big Bend Area in west Texas and Mexico is published by Mihlbachler & Prothero (2021).[367]
  • A study on the morphology of the central forelimb metapodial joint surface in extant and extinct members of Equoidea, aiming to determine potential drivers of modifications of the shape of metapodial–phalangeal joint in horse limbs throughout their evolutionary history, is published by MacLaren (2021).[368]
  • A study on the gait and speed of extinct horses, based on data from footprints likely produced by Scaphohippus intermontanus and Equus conversidens, is published by Vincelette (2021).[369]
  • A study on the evolution, biogeography and ecology of Eurasian and African hipparion horses living between 11.4 and 1 million years ago is published by Bernor et al. (2021).[370]
  • A study on the bone and dental histology of Eurygnathohippus hooijeri, and on its implications for the knowledge of the life history of this equid, is published by Nacarino-Meneses & Chinsamy (2021).[371]
  • Partially complete skeleton of a specimen of Hippidion saldiasi living near the end of the last glaciation, representing the southernmost high-elevation record for this species reported to date, is described from the Salar de Surire (northern Chile) by Labarca et al. (2021), who attempt to determine the body mass and diet of this specimen.[372]
  • A study testing existing body mass estimation equations of equids for their accuracy with modern zebras, and evaluating the implications of this test for the knowledge of the relationship between body size, diet and habitat in Pleistocene members of the genus Equus from Europe, is published by Saarinen et al. (2021).[373]
  • A study on the validity of the genera Plesippus and Allohippus, on the evolutionary relationships of Equus stenonis to other Old World Pleistocene and extant members of the genus Equus, and on the origin of zebras and asses is published by Cirilli et al. (2021).[374]
  • Revision of the European record of Equus stenonis and related forms is published by Cirilli et al. (2021).[375]
  • Revision of the fossil material of horses from the Dmanisi site (Georgia), including the oldest well-calibrated occurrence of Equus altidens in western Eurasia, is published by Bernor et al. (2021).[376]
  • A skull of the Grévy's zebra, representing the oldest definitive record of this species reported to date, is described from the Pleistocene Kapthurin Formation (Kenya) by O'Brien et al. (2021).[377]
  • Revision of the fossil material of Equus apolloniensis from the Pleistocene Apollonia 1 site (Mygdonia Basin, Greece), and a study on the phylogenetic relationships of this species, is published by Gkeme, Koufos & Kostopoulos (2021).[378]
  • A study aiming to determine possible impact of the Bering Land Bridge on genetic diversity and connectivity among North American and Eurasian populations of the caballine horses throughout their evolutionary history, based on data from mitochondrial and nuclear genomes from present-day and extinct horses sampled across the Holarctic is published by Vershinina et al. (2021).[379]
  • A study on the histology of limb bones of specimens of Equus occidentalis from La Brea Tar Pits (California, United States), and on its implications for the knowledge of life history of the studied specimens, is published by Tomassini et al. (2021).[380]
  • A genetic analysis by Pablo Librado et al. finds that today's domestic horses descend from the lower Volga-Don region, Russia. 273 ancient horse genomes further indicate that these populations replaced almost all local populations as they expanded rapidly throughout Eurasia from about 4200 years ago, that certain adaptations were strongly selected for by horse riding, and that equestrian material culture – including Sintashta spoke-wheeled chariots (but not Indo-European languages) and in the case of Asia Indo-Iranian languages – spread alongside.[381][355]

Other laurasiatherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Cynohyaenodon smithae[382]

Sp. nov

In press

Solé et al.

Eocene (Ypresian)

 France

A Hyaenodont.

Ekweeconfractus[383]

Gen. et sp. nov

Valid

Flink et al.

Early Miocene

Lothidok Formation

 Kenya

A Teratodontidae hyaenodont.
The type species is E. amorui.

Eurotherium mapplethorpei[382]

Sp. nov

In press

Solé et al.

Eocene (Ypresian)

 France

A Hyaenodont.

Lesmesodon gunnelli[382]

Sp. nov

In press

Solé et al.

Eocene (Ypresian)

 France

A Hyaenodont.

Neovulpavus mccarrolli[384]

Sp. nov

Valid

Tomiya et al.

Uintan

Washakie Formation

 United States
( Wyoming)

A basal member of Carnivoraformes.

Smutsia olteniensis[385]

Sp. nov

In press

Terhune et al.

Early Pleistocene

 Romania

A pangolin, a species of Smutsia.

Miscellaneous laurasiatherian research

[edit]
  • A study on the diet of Macrauchenia patachonica, as indicated by data from dental calculus, is published by de Oliveira et al. (2021).[386]
  • A study on the impact of the Paleocene–Eocene Thermal Maximum on the body size in the lineage of the mesonychid Dissacus praenuntius is published by Solé et al. (2021).[387]
  • A study on the anatomy of the braincase of Eurotherium theriodis, and on its implications for the knowledge of the likely ecology of this mammal, is published by Dubied, Solé & Mennecart (2021).[388]

Xenarthrans

[edit]

Cingulata

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Noatherium[389]

Gen. et sp. nov

Valid

Fernicola et al.

Eocene (Ypresian)

Lumbrera Formation

 Argentina

A Cingulatan.
Type species N. emilioi.

Plesiodasypus[390]

Gen. et sp. nov

In press

Barasoain et al.

Middle Miocene

La Victoria Formation

 Colombia

A Dasypodini dasypodid armadillo.
Type species P. colombianus.

Saltatherium[391]

Gen. et sp. nov

In press

Fernicola et al.

Middle Eocene

Quebrada de Los Colorados Formation

 Argentina

A Cingulatan.
Type species S. rosaurae.

?Utaetus magnum[392]

Sp. nov

Valid

Herrera et al.

Eocene (Bartonian)

Lumbrera Formation

 Argentina

A Euphractinae chlamyphorid hairy armadillo of uncertain generic affiliation.

Cingulata research

[edit]
  • A study on the anatomy of the bony labyrinth of the glyptodonts Glyptodon, Doedicurus, Panochthus and Pseudoplohophorus, as well as the pampathere Holmesina, is published by Tambusso et al. (2021), who evaluate the implications of their findings for the knowledge of the phylogenetic placement of glyptodonts and pampatheres.[393]
  • A study on the anatomy of the bony canals and cavities in the skulls of glyptodonts and armadillos, evaluating their implications for the knowledge of the evolutionary history of cingulates, is published by Le Verger, González Ruiz & Billet (2021).[394]
  • A study on the anatomy and phylogenetic relationships of Eleutherocercus solidus is published by Núñez-Blasco et al. (2021).[395]
  • A study on the evolution of the caudal tube in member of the genus Panochthus, and on the relationship between the shape of the tube and its usage as a weapon, is published by Zamorano & Fariña (2021).[396]
  • Revision and a study on the phylogenetic relationships of the genus Vetelia is published by Barasoain et al. (2021).[397]

Pilosa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Parocnus dominicanus[398]

Sp. nov

Valid

McAfee et al.

Late Pleistocene-early Holocene

 Dominican Republic

A megalocnid sloth

Similhapalops[399]

Gen. et sp. nov

Valid

Pujos et al.

Deseadan

Agua de la Piedra Formation

 Argentina

A small non-megalonychid megatherioid sloth.
Type species S. nivis.

Zacatzontli cotobrusensis[400]

Sp. nov

In press

Valerio et al.

Hemphillian

Curré Formation

 Costa Rica

A megalonychid ground sloth.

Pilosa research

[edit]
  • Fossil material of a sloth belonging to the family Megalocnidae is described from the late Miocene-early Pliocene Yanigüa-Los Haitises Formation (Dominican Republic) by Viñola-Lopez et al. (2021), representing the oldest fossil ground sloth from Hispaniola reported to date.[401]
  • The first record of Meizonyx salvadorensis from the late Pleistocene of Mexico is reported by McDonald et al. (2021), who study the phylogenetic relationships of this species, and discuss the palaeobiogeographical and palaeoecological implications of this finding.[402]
  • A study on the anomaly altering the size of the pituitary gland in a specimen of Valgipes bucklandi is published by Amaral et al. (2021), who interpret this anomaly as a probable pituitary tumor.[403]
  • A study on the anatomy of the postcranial skeleton of Simomylodon uccasamamensis, and on its implications for the knowledge of the phylogenetic relationships and locomotion of this species, is published by Boscaini et al. (2021).[404]
  • A study on the diet of Mylodon darwini, as indicated by isotopic analyses of nitrogen of amino acids from hair samples, is published by Tejada et al. (2021).[405]
  • A study on the pollen content of a well-preserved coprolite of Mylodon darwinii from the Mylodon Cave (Chile), and on its implications for the knowledge of the diet of this sloth, is published by van Geel et al. (2021).[406]
  • A study on the enlarged lower caniniform teeth of Lestodon armatus is published by Varela, McDonald & Fariña (2021), who interpret their findings as supporting the existence of sexual dimorphism in L. armatus.[407]
  • A petrosal bone of Glossotherium tropicorum is described from the Pleistocene of Trinidad by Gaudin & Broome (2021), expanding known geographic range of this species.[408]
  • A study reporting the occurrence of Valgipes bucklandi in the Arroyo del Vizcaíno site (Uruguay), expanding the known distribution of this sloth in the late Pleistocene, is published by Lobato et al. (2021).[409]

Other eutherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Arcius moniquae[36]

Sp. nov

In press

Godinot & Vidalenc in Godinot et al.

Eocene

 France

A paromomyid plesiadapiform.

Asiapator[410]

Gen. et sp. nov

Valid

Lopatin & Averianov

Eocene (Irdinmanhan)

Khaychin Formation

 Mongolia

A member of the family Apatemyidae. Genus includes new species A. onchin.

Azilestes[411]

Gen. et sp. nov

Valid

Gheerbrant & Teodori

Late Cretaceous (Maastrichtian)

Formation des Grès de Labarre

 France

An early eutherian of uncertain phylogenetic placement, possibly a member of the family Zhelestidae. The type species is A. ragei.

Beornus[412]

Gen. et sp. nov

Valid

Atteberry & Eberle

Puercan

Fort Union Formation

 United States
( Wyoming)

A member of the family Periptychidae. Genus includes new species B. honeyi.

Conacodon hettingeri[412]

Sp. nov

Valid

Atteberry & Eberle

Puercan

Fort Union Formation

 United States
( Wyoming)

A member of the family Periptychidae.

Ectocion stockeyae[413]

Sp. nov

Valid

Montellano-Ballesteros, Fox & Scott

Late Paleocene

Paskapoo Formation

 Canada
( Alberta)

A member of the family Phenacodontidae.

Hyopsodus arshantensis[414]

Sp. nov

Valid

Bai et al.

Eocene (Arshantan)

Arshanto Formation

 China

A member of the family Hyopsodontidae.

Micropternodus bassidens[415]

Sp. nov

Valid

Korth, Kihm & Schumaker

Chadronian

 United States
( North Dakota)

Miniconus[412]

Gen. et comb. et sp. nov

Valid

Atteberry & Eberle

Early Paleocene

Denver Formation
Fort Union Formation

 United States
( Colorado
 Wyoming)

A member of the family Periptychidae. The type species is "Oxyacodon" archibaldi Middleton & Dewar (2004); genus also includes new species M. jeanninae.

Oligoryctes amplissimus[415]

Sp. nov

Valid

Korth, Kihm & Schumaker

Chadronian

 United States
( North Dakota)

Purgatorius mckeeveri[416]

Sp. nov

Wilson Mantilla et al.

Early Paleocene

Fort Union Formation

 United States
( Montana)

Sinclairella nanus[415]

Sp. nov

Valid

Korth, Kihm & Schumaker

Chadronian

 United States
( North Dakota)

An apatemyid.

Other eutherian research

[edit]
  • Description of the tympanic petrosal anatomy of Deltatherium fundaminis is published by Shelley et al. (2021).[417]
  • A study on the phylogenetic affinities of extinct native South American ungulates is published by Avilla & Mothé (2021);[418] their conclusions are subsequently contested by Kramarz & Macphee (2022).[419]
  • A study on the phylogenetic affinities of Escribania chubutensis and other extinct native South American ungulates is published by Kramarz, Bond & MacPhee (2021).[420]
  • A study on limb evolution in native South American ungulates from the late Oligocene to Pleistocene is published by Croft & Lorente (2021).[421]
  • A study on the skull anatomy and phylogenetic relationships of Trigonostylops wortmani is published by MacPhee et al. (2021).[422]
  • New data on the anatomy of the skull of Palaeolagus haydeni, including the structures of the nasal and auditory regions of the skull, is presented by Wolniewicz & Fostowicz-Frelik (2021) and Ruf, Meng & Fostowicz-Frelik (2021).[423][424]
  • A study on evolutionary transitions of microsyopid plesiadapiforms from the early Eocene of the southern Bighorn Basin (Wyoming, United States) is published by Silcox et al. (2021), who interpret the fossil record as indicating that Microsyops angustidens branched off from a population of Arctodontomys nuptus, but the latter species persisted and did not suffer pseudoextinction, providing a rare example of possible cladogenesis in the fossil record.[425]
  • A study on dietary changes in microsyopids over time is published by Selig, Chew & Silcox (2021).[426]
  • Description of dental caries in a sample of teeth of Microsyops latidens, representing the earliest known incidences of caries among fossil mammals, is published by Selig & Silcox (2021), who evaluate the implications of the studied fossils for the knowledge of the diet of M. latidens.[427]
  • A study on jaw form and function in Chiromyoides is published by Boyer, Schaeffer & Beard (2021), who interpret this plesiadapid as an extractive forager similar to extant aye-aye.[428]

General eutherian research

[edit]
  • A study on factors affecting the accuracy of mitogenomic phylogeny reconstruction for placental mammals is published by Phillips & Shazwani Zakaria (2021), who also study the phylogenetic relationships of glyptodonts, Macrauchenia and sabre-toothed and scimitar cats among placental mammals on the basis of data from mitochondrial DNA.[429]
  • Geochemical analyses of Paleogene terrestrial mammal remains from the Ouled Abdoun Basin (Morocco), aiming to establish their taphonomy, stratigraphic provenance and paleoenvironmental conditions, are performed by Kocsis et al. (2021).[430]
  • A study aiming to determine whether the dietary niches of hyaenodonts and carnivorans from the Chadronian Calf Creek Local Fauna (Cypress Hills Formation; Saskatchewan, Canada) overlapped is published by Christison et al. (2021).[431]
  • A study on the lineage diversification and loss in Afro-Arabian mammal groups (hyaenodonts, anomaluroid and hystricognath rodents, and anthropoid and strepsirrhine primates) since the early Eocene is published by de Vries et al. (2021), who interpret their findings as indicative of widespread extinction of Afro-Arabian mammals in the early Oligocene.[432]
  • A study on the age of fossils from the Santa Rosa fossil locality (Peru), and on its implications for the knowledge of the age of the oldest known South American primates and caviomorph rodents from this site and from the CTA-27 site in the Contamana region of Peru, is published by Campbell et al. (2021).[433]
  • Evidence of long periods of functional stasis in mammalian ecological assemblages from the Iberian Peninsula spanning the past 21 million years is presented by Blanco et al. (2021).[434]
  • A study on the relative dimensions and compactness of ribs and limb bones in true seals and cetaceans from the Miocene of the Paratethys is published by Dewaele et al. (2021), who interpret their findings as indicative of convergent re-emergence of bone densification in the studied mammals.[435]
  • Revision of the fossil material of late Miocene proboscideans and odd-toed ungulates from the Kaisiinitsa and Tranerska formations (Bulgaria) is published by Böhme et al. (2021).[436]
  • 10-million-year long proxy record of Arabian climate is developed by Böhme et al. (2021), who report evidence indicative of a sustained period of hyperaridity in the Pliocene and a number of transient periods of hyperaridity in northern Arabia during the late Miocene which were out of phase with those in North Africa, and argue that these desert dynamics had a strong control on large-scale mammalian dispersals between Africa and Eurasia.[437]
  • The first known terrestrial vertebrate fauna from the early Pliocene of western Africa, including a diversity of large mammals with a high proportion of carnivorans, is described from the Tobène site (Senegal) by Lihoreau et al. (2021).[438]
  • A study on the dietary behavior and specialization of North American mammalian herbivores over the past 7 million years, based on stable isotope data from tooth enamel, is published by Pardi & DeSantis (2021).[439]
  • Arriaza et al. (2021) report presence of brown hyena tooth marks on australopith remains from Sterkfontein's Plio-Pleistocene-age Member 4 (South Africa), and interpret this finding as first direct evidence of hyenid scavenging on australopiths.[440]
  • A study comparing the large mammal assemblage from the Dmanisi site (Georgia) with African and Eurasian assemblages of similar age, and evaluating its implications for the knowledge of the timing and direction of zoogeographic connections between western Eurasia and Africa during the Early Pleistocene, is published by Bartolini-Lucenti et al. (2021).[441]
  • A study on Pleistocene extinctions in the Southern Levant throughout the last 1.5 million years and their likely causes is published by Dembitzer et al. (2021), who interpret their findings as indicating that humans extirpated Levantine megafauna throughout the Pleistocene, and when the largest species were depleted the next-largest were targeted;[442] their conclusions are subsequently contested by Orbach, Amos & Yeshurun (2022).[443][444]
  • Evidence from mitochondrial data from fossil horses and a camel recovered from the Natural Trap Cave (Wyoming, United States), indicative of high level of genetic connectivity between horse and camel populations in the Bighorn Mountains and Eastern Beringia during the Pleistocene, is presented by Mitchell et al. (2021).[445]
  • A study on the diets of Late Pleistocene Alaskan bisons and horses, as indicated by data from tooth wear, is published by Kelly et al. (2021).[446]
  • A study on the fossil record of the Late Quaternary North American megafauna, aiming to determine whether human population levels, climate change, or both correspond quantitatively to changes in megafauna population levels through time, is published by Stewart, Carleton & Groucutt (2021).[447]
  • A study on ancient environmental DNA of plants and animals recovered from sediments from sites distributed across much of the Arctic covering the past 50 thousand years is published by Wang et al. (2021), who interpret their findings as providing evidence of the survival of the woolly rhinoceros in northeast Kolyma as late as approximately 9.8 ka and the survival of mammoths in North America and Siberia into the Early Holocene (as late as approximately 3.9 ka in the area of the Taymyr Peninsula), and providing evidence of a previously unsampled mitochondrial lineage of mammoths;[448] their conclusions about the late survival of the mammoths are subsequently contested by Miller & Simpson (2022).[449][450]
  • Murchie et al. (2021) present a 30,000-year sedimentary ancient DNA record from permafrost silts in the Klondike region of Yukon (Canada), and interpret their findings as indicative of persistence of North American horses and woolly mammoths for thousands of years after their supposed disappearance from the fossil record.[451]
  • A study on the impact of humans on the late Pleistocene megafaunal extinctions in South America, comparing the temporal dynamics and spatial distribution of South American megafauna and fluted (Fishtail) projectile points, is published by Prates & Perez (2021).[452]
  • A study on the impact of climatic and environmental changes on Equus neogeus and Notiomastodon platensis, aiming to determine how the spatial extent of habitats suitable for these mammals changed between the Last Glacial Maximum and the middle Holocene, is published by Araújo et al. (2021).[453]
  • A study on ancient DNA of hominins and other mammals extracted from Pleistocene deposits in the Denisova Cave (Russia) is published by Zavala et al. (2021), who interpret their findings as indicative of two major turnovers of large mammals present at this site, of repeated occupation of the site by Denisovans and Neanderthals, and of the appearance of modern humans at this site at least 45,000 years ago.[454]
  • Gelabert et al. (2021) retrieve nuclear and mitochondrial human, wolf and bison genomes from a 25,000-year-old sediment sample from the Satsurblia Cave (Georgia), and evaluate the implications of these genomes for the knowledge of the evolutionary history of these species.[455]
  • A study on the diets of Pleistocene and Holocene megafauna, based on data from permafrost and ice-preserved faeces of woolly mammoth, horse, steppe bison, and Holocene and extant caribou, is published by Polling et al. (2021).[456]

Metatherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Bulbadon[457]

Gen. et sp. nov

Valid

Travouillon, Beck & Case

Late Oligocene

 Australia

A potential thylacomyid. Genus includes new species B. warburtonae

Bulungu minkinaensis[457]

Sp. nov

Valid

Travouillon, Beck & Case

Late Oligocene

 Australia

A member of Yaraloidea.

Bulungu pinpaensis[457]

Sp. nov

Valid

Travouillon, Beck & Case

Late Oligocene

 Australia

A member of Yaraloidea.

Bulungu westermani[457]

Sp. nov

Valid

Travouillon, Beck & Case

Late Oligocene

 Australia

A member of Yaraloidea.

Caenolestoides[458]

Gen. et sp. nov

Valid

Abello, Martin & Cardoso

Early Miocene

 Argentina

A shrew opossum. Genus includes new species C. miocaenicus.

Diogenesia[459]

Gen. et sp. nov

Valid

Oliveira, Carneiro & Goin

Itaboraian

Itaboraí Basin

 Brazil

A member of the family Derorhynchidae. The type species is D. brevirostris.

Gaimanlestes[458]

Gen. et sp. nov

Valid

Abello, Martin & Cardoso

Early Miocene

 Argentina

A shrew opossum. Genus includes new species G. pascuali.

Scalaridelphys[460]

Nom. nov

Valid

Cohen, Davis & Cifelli

Late Cretaceous
(Turonian)

Straight Cliffs Formation

 United States
( Utah)

A member of Pediomyoidea belonging to the family Aquiladelphidae;
a replacement name for Scalaria Cohen, Davis & Cifelli (2020).

Stilotherium parvum[458]

Sp. nov

Valid

Abello, Martin & Cardoso

Early Miocene

 Argentina

A shrew opossum.

Metatherian research

[edit]
  • A study aiming to determine whether functional constraints during development may have limited evolution of the morphological diversity of metatherian jaws relative to the morphological diversity of eutherian jaws, based on data from extant and fossil metatherians and eutherians, is published by Fabre et al. (2021).[461]
  • Revision of the fossil record of Cenozoic metatherians and alleged metatherians from Africa is published by Crespo & Goin (2021).[462]
  • A study on the pre-Quaternary fossil record of the family Didelphidae, aiming to determine the area of origin and diversification of this group, is published by Castro, Dahur & Ferreira (2021).[463]
  • A study on the mobility of the elbow in Palorchestes azael, and on its implications for the knowledge of the likely posture of this marsupial, is published by Richards et al. (2021).[464]
  • New postcranial material of Wakaleo vanderleuri and W. alcootaensis, providing evidence of increasing adaptation towards terrestrial locomotion and felid-like grappling predation within the Wakaleo lineage, is described from mid- and late-Miocene fossil deposits from the Australian Northern Territory by Warburton & Yates (2021).[465]
  • A study on the diet of Hulitherium tomasettii is published by White et al. (2021).[466]
  • A study on the timing of persistence of Diprotodon optatum is published by Price et al. (2021).[467]
  • New fossil material of "Wallabia" kitcheneri, providing new information on the anatomy of this kangaroo, is described from the Thylacoleo Caves (Nullarbor Plain, Australia) by Warburton & Prideaux (2021), who transfer this species to the genus Congruus.[468]
  • A study on the humeral morphology of extinct giant kangaroos belonging to the genus Protemnodon and to the subfamily Sthenurinae, and on its implications for the knowledge of the locomotion of these kangaroos, is published by Jones et al. (2021).[469]

Other mammals

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Aenigmamys[470]

Gen. et sp. nov

Valid

Scott

Early Paleocene

Willow Creek Formation

 Canada
( Alberta)

A multituberculate belonging to the family Ptilodontidae. Genus includes new species A. aries.

Amarillodon[471]

Gen. et sp. nov

In press

Martin et al.

Late Cretaceous (Cenomanian)

Mata Amarilla Formation

 Argentina

A member of Meridiolestida. Genus includes new species A. meridionalis.

Hercynodon[472]

Gen. et sp. nov

Valid

Martin et al.

Late Jurassic (Kimmeridgian)

Süntel Formation

 Germany

A member of the family Dryolestidae. The type species is H. germanicus.

Jueconodon[473]

Gen. et sp. nov

Valid

Mao et al.

Early Cretaceous (early Barremian to early Aptian)

Yixian Formation

 China

A member of Eutriconodonta. Genus includes new species J. cheni.

Kogaionon radulescui[474]

Sp. nov

In press

Smith et al.

Late Cretaceous

Sânpetru Formation

 Romania

A multituberculate.

Nokerbaatar[475]

Gen. et comb. nov

Valid

Lopatin & Averianov

Early Cretaceous

 Mongolia

A multituberculate belonging to the family Eobaataridae; a new genus for "Eobaatar" minor Kielan-Jaworowska, Dashzeveg & Trofimov (1987).

Orretherium[476]

Gen. et sp. nov

Valid

Martinelli et al.

Late Cretaceous (late Campanian to early Maastrichtian)

Dorotea Formation

 Chile

A member of Meridiolestida belonging to the family Mesungulatidae. The type species is O. tzen.

Treslagosodon[471]

Gen. et sp. nov

In press

Martin et al.

Late Cretaceous (Cenomanian)

Mata Amarilla Formation

 Argentina

A dryolestid. Genus includes new species T. shehuensis.

Yubaatar qianzhouensis[477]

Sp. nov

Valid

Hu & Han

Late Cretaceous

Hekou Formation

 China

A multituberculate.

Other mammalian research

[edit]
  • Two isolated mammal petrosals are described from the Upper Jurassic Morrison Formation (Cisco Mammal Quarry, Utah, United States) by Davis, Cifelli & Rougier (2021), who report the presence of several plesiomorphic mammalian characters, but also the cochlear endocast making one full turn (a derived condition known in early therians such as Prokennalestes, but previously unrecorded in the Jurassic), and evaluate the implications of the studied specimens for the knowledge of the mammalian inner ear evolution.[478]
  • Fragment of a dentary of Gobiconodon borissiaki with tooth marks which were probably produced by multituberculates is described from the Early Cretaceous Zuun-Höövör locality (Mongolia) by Lopatin (2021), who interprets this finding as earliest evidence of scavenging by multituberculates.[479]
  • Partial skeleton of a member of the genus Kryptobaatar, preserving anatomical characters specific to Kryptobaatar dashzevegi and others specific to K. mandahuensis, is described from the Campanian Bayan Mandahu Formation (China) by Devillet et al. (2021), who evaluate the implications of this specimen for the knowledge of the intraspecific variability in multituberculates belonging to the genus Kryptobaatar, as well as the validity of the species K. mandahuensis.[480]
  • New skull material of Taeniolabis taoensis, providing new information on the anatomy of this multituberculate, is described from the Paleocene (Danian) Denver Formation (Colorado, United States) by Krause et al. (2021).[481]
  • Description of the first maxillae and additional new specimens of Reigitherium bunodontum from the Upper Cretaceous La Colonia Formation (Argentina), providing new information on the anatomy of this mammal, and a study on its phylogenetic relationships is published by Rougier et al. (2021).[482]
  • Putative docodont and ausktribosphenid australosphenidan fossil material, representing the first possible records of both groups from South America, is reported from the Cenomanian Mata Amarilla Formation (Argentina) by Martin et al. (2021).[471]

General research

[edit]
  • A study on the evolution of the brain size relative to the body size in mammals, based on data from extant and extinct taxa, is published by Smaers et al. (2021).[483]
  • A study on the evolution of the morphological diversity of mammals and their closest mammaliaform relatives is published by Brocklehurst et al. (2021), who interpret their findings as indicating that Mesozoic crown-group therians were significantly more constrained in their capacity to evolve novel phenotypes than other mammaliaforms, and that relaxation of these constraints occurred in the Paleocene, post-dating the Cretaceous–Paleogene extinction event and coinciding with environmental shifts and declining diversity of non-theriimorph mammaliaforms.[484]
  • A study evaluating how jaw shape and mechanical advantage of the masseter and temporalis muscles relate to diet in extant and Mesozoic mammals is published by Morales-García et al. (2021).[485]
  • A study comparing data from molecular timetrees and fossil record of mammals, and evaluating their implications for the knowledge whether mammals exhibited a burst of lineage diversification coincident with, before, or after the Cretaceous–Paleogene extinction event, is published by Upham, Esselstyn & Jetz (2021).[486]
  • A study on the timeline of mammal evolution, based on data from 72 mammal genomes, is published by Álvarez-Carretero et al. (2021), who interpret their findings as refuting an explosive model of placental mammal origination in the Paleogene, and indicating that crown Placentalia originated in the Late Cretaceous.[487]
  • A study on patterns of substrate preference among crown group mammals living across the Cretaceous–Paleogene boundary is published by Hughes et al. (2021), who interpret their findings as suggestive of a pattern of predominant survivorship of the Cretaceous–Paleogene extinction event among semi-arboreal or nonarboreal mammals, but also indicating that some or all members of the total group of Euarchonta might have maintained arboreal habits across the Cretaceous–Paleogene boundary.[488]
  • A study on the diversity of locomotor ecologies of Paleocene mammals, and on its implications for the knowledge of the evolution of tarsal morphology of mammals in the aftermath of the Cretaceous–Paleogene extinction event, is published by Shelley, Brusatte & Williamson (2021).[489]
  • Tracks produced by mammals walking across submerged to partially emergent tidal flats, representing the oldest evidence of the utilization of marine habitat by mammals reported to date, are described from the Paleocene Hanna Formation (Wyoming, United States) by Wroblewski & Gulas-Wroblewski (2021).[490]
  • A study on the anatomy of the skulls of saber-toothed mammals, and on its implications for the knowledge of likely killing behaviours of these mammals, is published by Melchionna et al. (2021).[491]
  • A study on patterns of mammalian species richness in the Basin and Range Province of western North America throughout the last 36 million years, aiming to determine whether intervals of high species richness corresponded with elevated sediment accumulation and fossil burial in response to tectonic deformation, is published by Loughney et al. (2021).[492]
  • A study aiming to estimate the completeness of the mammalian fossil record in the Miocene is published by Žliobaitė & Fortelius (2021).[493]
  • A study aiming to determine whether changes in geographic range that could result from human impacts have altered the climatic niches of 46 species of mammals within the contiguous United States, based on data from the fossil record, is published by Pineda-Munoz et al. (2021).[494]
  • A study assessing the accuracy of bite force estimates in extinct mammals and archosaurs is published by Sakamoto (2021).[495]
  • A study on the lower carnassial morphology and the evolution of carnassial teeth in mammals, based on data from teeth of carnivorans, hyaenodonts and dasyuromorph marsupials, is published by Lang, Engler & Martin (2021).[496]

References

[edit]
  1. ^ a b c d Senut, B.; Pickford, M. (2021). "Micro-cursorial mammals from the late Eocene tufas at Eocliff, Namibia" (PDF). Communications of the Geological Survey of Namibia. 23: 90–160.
  2. ^ a b Stevens, N. J.; O'Connor, P. M.; Mtelela, C.; Roberts, E. M. (2021). "Macroscelideans (Myohyracinae and Rhynchocyoninae) from the late Oligocene Nsungwe formation of the Rukwa Rift Basin, southwestern Tanzania". Historical Biology: An International Journal of Paleobiology. 34 (4): 604–610. doi:10.1080/08912963.2021.1938565. S2CID 237700792.
  3. ^ Hautier, L.; Tabuce, R.; Mourlam, M. J.; Kassegne, K. E.; Amoudji, Y. Z.; Orliac, M.; Quillévéré, F.; Charruault, A.-L.; Johnson, A. K. C.; Guinot, G. (2021). "New Middle Eocene proboscidean from Togo illuminates the early evolution of the elephantiform-like dental pattern". Proceedings of the Royal Society B: Biological Sciences. 288 (1960): Article ID 20211439. doi:10.1098/rspb.2021.1439. PMC 8511763. PMID 34641726.
  4. ^ Cantalapiedra, J. L.; Sanisidro, Ó.; Zhang, H.; Alberdi, M. T.; Prado, J. L.; Blanco, F.; Saarinen, J. (2021). "The rise and fall of proboscidean ecological diversity". Nature Ecology & Evolution. 5 (9): 1266–1272. Bibcode:2021NatEE...5.1266C. doi:10.1038/s41559-021-01498-w. PMID 34211141. S2CID 235712060.
  5. ^ Gasamans, N.; Luján, À. H.; Pons-Monjo, G.; Obradó, P.; Casanovas-Vilar, I.; Alba, D. M. (2021). "The Record of Prodeinotherium in the Iberian Peninsula: New Data from the Vallès-Penedès Basin". Journal of Mammalian Evolution. 28 (3): 647–660. doi:10.1007/s10914-021-09543-y. S2CID 234806320.
  6. ^ Cocker, S. L.; Pisaric, M. F. J.; McCarthy, F.; Vermaire, J. C.; Beaupre, P.; Cwynar, L. (2021). "Dung analysis of the East Milford mastodons: dietary and environmental reconstructions from central Nova Scotia at ~75 ka yr BP". Canadian Journal of Earth Sciences. 58 (10): 1059–1072. doi:10.1139/cjes-2020-0164. S2CID 234854445.
  7. ^ Htun, T.; Prothero, D. R.; Hoffman, J. M.; Lukowski, S. M. (2021). "How did mastodons grow? Ontogenetic long bone growth in American mastodons". New Mexico Museum of Natural History and Science Bulletin. 82: 145–150.
  8. ^ Bonhof, W. J.; Pryor, A. J. E. (2021). "Proboscideans on Parade: A review of the migratory behaviour of elephants, mammoths, and mastodons". Quaternary Science Reviews. 277: Article 107304. doi:10.1016/j.quascirev.2021.107304. hdl:10871/128047. S2CID 245440050.
  9. ^ Mothé, D.; de Oliveira, K.; Rotti, A.; Román-Carrión, J. L.; Bertolino, L. C.; Krepsky, N.; Avilla, L. (2021). "The micro from mega: Dental calculus description and the first record of fossilized oral bacteria from an extinct proboscidean". International Journal of Paleopathology. 33: 55–60. doi:10.1016/j.ijpp.2021.02.004. PMID 33721688. S2CID 232244356.
  10. ^ Baleka, S.; Varela, L.; Tambusso, P. S.; Paijmans, J. L. A.; Mothé, D.; Stafford, T. W.; Fariña, R. A.; Hofreiter, M. (2021). "Revisiting proboscidean phylogeny and evolution through total evidence and palaeogenetic analyses including Notiomastodon ancient DNA". iScience. 25 (1): Article 103559. doi:10.1016/j.isci.2021.103559. PMC 8693454. PMID 34988402. S2CID 244901358.
  11. ^ Schmidt-Schultz, T. H.; Reich, M.; Schultz, M. (2021). "Exceptionally preserved extracellular bone matrix proteins from the late Neogene proboscidean Anancus (Mammalia: Proboscidea)". PalZ. 95 (4): 757–765. Bibcode:2021PalZ...95..757S. doi:10.1007/s12542-021-00566-7.
  12. ^ Kang, J.-C.; Lin, C.-H.; Chang, C.-H. (2021). "Age and growth of Palaeoloxodon huaihoensis from Penghu Channel, Taiwan: significance of their age distribution based on fossils". PeerJ. 9: e11236. doi:10.7717/peerj.11236. PMC 8052959. PMID 33954049.
  13. ^ Liakopoulou, D. E.; Theodorou, G. E.; van Heteren, A. H. (2021). "The inner morphology of the petrosal bone of the endemic elephant of Tilos Island, Greece". Palaeontologia Electronica. 24 (2): Article number 24.2.a23. doi:10.26879/1034.
  14. ^ Baleka, S.; Herridge, V. L.; Catalano, G.; Lister, A. M.; Dickinson, M. R.; Di Patti, C.; Barlow, A.; Penkman, K. E. H.; Hofreiter, M.; Paijmans, J. L. A. (2021). "Estimating the dwarfing rate of an extinct Sicilian elephant" (PDF). Current Biology. 31 (16): 3606–3612.e7. doi:10.1016/j.cub.2021.05.037. PMID 34146486. S2CID 235477150.
  15. ^ Köhler, M.; Herridge, V.; Nacarino-Meneses, C.; Fortuny, J.; Moncunill-Solé, B.; Rosso, A.; Sanfilippo, R.; Palombo, M. R.; Moyà-Solà, S. (2021). "Palaeohistology reveals a slow pace of life for the dwarfed Sicilian elephant". Scientific Reports. 11 (1): Article number 22862. Bibcode:2021NatSR..1122862K. doi:10.1038/s41598-021-02192-4. PMC 8613187. PMID 34819557.
  16. ^ Neto de Carvalho, C.; Belaústegui, Z.; Toscano, A.; Muñiz, F.; Belo, J.; Galán, J. M.; Gómez, P.; Cáceres, L. M.; Rodríguez-Vidal, J.; Cunha, P. P.; Cachão, M.; Ruiz, F.; Ramirez-Cruzado, S.; Giles-Guzmán, F.; Finlayson, G.; Finlayson, S.; Finlayson, C. (2021). "First tracks of newborn straight-tusked elephants (Palaeoloxodon antiquus)". Scientific Reports. 11 (1): Article number 17311. Bibcode:2021NatSR..1117311N. doi:10.1038/s41598-021-96754-1. PMC 8445925. PMID 34531420.
  17. ^ Palombo, M. R.; Sanz, M.; Daura, J. (2021). "The complete skeleton of a straight-tusked elephant calf from Cova del Rinoceront (Late Pleistocene, NE Iberian Peninsula): New insights into ontogenetic growth in Palaeoloxodon antiquus". Quaternary Science Reviews. 274: Article 107257. Bibcode:2021QSRv..27407257P. doi:10.1016/j.quascirev.2021.107257. S2CID 244088519.
  18. ^ Sanders, W. J.; Leakey, M. G.; Leakey, L. N.; Feibel, C. S.; Ibui, T. G.; Nyete, C.; Mbete, M. P.; Brown, F. H. (2021). "Morphological description and identification of an extraordinary new elephant cranium from the early Pliocene of Ileret, Kenya". Palæovertebrata. 44 (2): e3. doi:10.18563/pv.44.2.e3. S2CID 239606229.
  19. ^ van der Valk, T.; Pečnerová, P.; Díez-del-Molino, D.; Bergström, A.; Oppenheimer, J.; Hartmann, S.; Xenikoudakis, G.; Thomas, J. A.; Dehasque, M.; Sağlıcan, E.; Fidan, F. R.; Barnes, I.; Liu, S.; Somel, M.; Heintzman, P. D.; Nikolskiy, P.; Shapiro, B.; Skoglund, P.; Hofreiter, M.; Lister, A. M.; Götherström, A.; Dalén, L. (2021). "Million-year-old DNA sheds light on the genomic history of mammoths". Nature. 591 (7849): 265–269. Bibcode:2021Natur.591..265V. doi:10.1038/s41586-021-03224-9. PMC 7116897. PMID 33597750.
  20. ^ Maschenko, E. N.; Potapova, O. R.; Heintzman, P. D.; Kapp, J. D.; Shapiro, B.; Protopopov, A. V.; Boeskorov, G. G.; Pavlov, I. S.; Plotnikov, V. V.; Kolesov, S. D.; Klimovskiy, A. I.; Kharlamova, A. S.; van der Plicht, J.; Agenbroad, L. D. (2021). "Morphology, Individual Age, DNA and Sex of the Yuka Mammoth (Mammuthus primigenius) from Northern Yakutia, Russia". Paleontological Journal. 55 (11): 1230–1259. Bibcode:2021PalJ...55.1230M. doi:10.1134/S003103012111006X. S2CID 245540116.
  21. ^ Aznar-Cormano, L.; Bonnald, J.; Krief, S.; Guma, N.; Debruyne, R. (2021). "Molecular sexing of degraded DNA from elephants and mammoths: a genotyping assay relevant both to conservation biology and to paleogenetics". Scientific Reports. 11 (1): Article number 7227. doi:10.1038/s41598-021-86010-x. PMC 8012363. PMID 33790303.
  22. ^ Dehasque, M.; Pečnerová, P.; Muller, H.; Tikhonov, A.; Nikolskiy, P.; Tsigankova, V. I.; Danilov, G. K.; Díez-del-Molino, D.; Vartanyan, S.; Dalén, L.; Lister, A. M. (2021). "Combining Bayesian age models and genetics to investigate population dynamics and extinction of the last mammoths in northern Siberia". Quaternary Science Reviews. 259: Article 106913. Bibcode:2021QSRv..25906913D. doi:10.1016/j.quascirev.2021.106913. S2CID 233543246.
  23. ^ Wooller, M. J.; Bataille, C.; Druckenmiller, P.; Erickson, G. M.; Groves, P.; Haubenstock, N.; Howe, T.; Irrgeher, J.; Mann, D.; Moon, K.; Potter, B. A.; Prohaska, T.; Rasic, J.; Reuther, J.; Shapiro, B.; Spaleta, K. J.; Willis, A. D. (2021). "Lifetime mobility of an Arctic woolly mammoth". Science. 373 (6556): 806–808. Bibcode:2021Sci...373..806W. doi:10.1126/science.abg1134. PMID 34385399. S2CID 236991244.
  24. ^ Suarez, C.; Gelfo, J. N.; Moreno-Bernal, J. W.; Velez-Juarbe, J. (2021). "An early Miocene manatee from Colombia and the initial Sirenian invasion of freshwater ecosystems". Journal of South American Earth Sciences. 109: Article 103277. Bibcode:2021JSAES.10903277S. doi:10.1016/j.jsames.2021.103277. S2CID 233641339.
  25. ^ Kerber, L.; Moraes–Santos, H. (2021). "Endocranial Morphology of a Middle Miocene South American Dugongid and the Neurosensorial Evolution of Sirenians". Journal of Mammalian Evolution. 28 (3): 661–678. doi:10.1007/s10914-021-09555-8. S2CID 236226810.
  26. ^ Sharko, F. S.; Boulygina, E. S.; Tsygankova, S. V.; Slobodova, N. V.; Alekseev, D. A.; Krasivskaya, A. A.; Rastorguev, S. M.; Tikhonov, A. N.; Nedoluzhko, A. V. (2021). "Steller's sea cow genome suggests this species began going extinct before the arrival of Paleolithic humans". Nature Communications. 12 (1): Article number 2215. Bibcode:2021NatCo..12.2215S. doi:10.1038/s41467-021-22567-5. PMC 8044168. PMID 33850161.
  27. ^ Campos, A. A.; Bullen, C. D.; Gregr, E. J.; McKechnie, I.; Chan, K. M. A. (2022). "Steller's sea cow uncertain history illustrates importance of ecological context when interpreting demographic histories from genomes". Nature Communications. 13 (1): Article number 3674. Bibcode:2022NatCo..13.3674C. doi:10.1038/s41467-022-31381-6. PMC 9240004. PMID 35764647.
  28. ^ Sharko, F. S.; Rastorguev, S. M.; Tikhonov, A. N.; Nedoluzhko, A. V. (2022). "Reply to: "Steller's sea cow uncertain history illustrates importance of ecological context when interpreting demographic histories from genomes"". Nature Communications. 13 (1): Article number 3672. Bibcode:2022NatCo..13.3672S. doi:10.1038/s41467-022-31382-5. PMC 9240042. PMID 35764648.
  29. ^ Tabuce, R.; Lihoreau, F.; Mees, F.; Orliac, M. J.; De Putter, T.; Smith, T. (2021). "A reassessment of the Oligocene hyracoid mammals from Malembo, Cabinda, Angola" (PDF). Geobios. 66–67: 207–215. Bibcode:2021Geobi..66..207T. doi:10.1016/j.geobios.2021.03.003. S2CID 234808941.
  30. ^ Erbajeva, M. A.; Bayarmaa, B. (2021). "A review of the genus Alloptox (Lagomorpha, Ochotonidae) from the Valley of Lakes, central Mongolia, with description of a new species". Paleontological Journal. 55 (2): 217–223. Bibcode:2021PalJ...55..217E. doi:10.1134/S0031030121020040. S2CID 233746759.
  31. ^ Roksandic, Mirjana; Radović, Predrag; Wu, Xiu-Jie; Bae, Christopher J. (2021). "Resolving the "muddle in the middle": The case for Homo bodoensis sp. nov". Evolutionary Anthropology: Issues, News, and Reviews. 31 (1): 20–29. doi:10.1002/evan.21929. ISSN 1520-6505. PMC 9297855. PMID 34710249. S2CID 240152672.
  32. ^ Ji, Q.; Wu, W.; Ji, Y.; Li, Q.; Ni, X. (2021). "Late Middle Pleistocene Harbin cranium represents a new Homo species". The Innovation. 2 (3): Article 100132. Bibcode:2021Innov...200132J. doi:10.1016/j.xinn.2021.100132. PMC 8454552. PMID 34557772.
  33. ^ Shao, Q.; Ge, J.; Ji, Q.; Li, J.; Wu, W.; Ji, Y.; Zhan, T.; Zhang, C.; Li, Q.; Grün, R.; Stringer, C.; Ni, X. (2021). "Geochemical provenancing and direct dating of the Harbin archaic human cranium". The Innovation. 2 (3): Article 100131. Bibcode:2021Innov...200131S. doi:10.1016/j.xinn.2021.100131. PMC 8454624. PMID 34557771.
  34. ^ Ni, X.; Ji, Q.; Wu, W.; Shao, Q.; Ji, Y.; Zhang, C.; Liang, L.; Ge, J.; Guo, Z.; Li, J.; Li, Q.; Grün, R.; Stringer, C. (2021). "Massive cranium from Harbin in northeastern China establishes a new Middle Pleistocene human lineage". The Innovation. 2 (3): Article 100130. Bibcode:2021Innov...200130N. doi:10.1016/j.xinn.2021.100130. PMC 8454562. PMID 34557770.
  35. ^ Pickford, M.; Senut, B.; Gommery, D.; Musalizi, M.; Ssebuyungo, C. (2021). "Revision of the smaller-bodied anthropoids from Napak, early Miocene, Uganda: 2011-2020 collections". Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und Paläontologie. 51: 1–135. ISBN 978-3-89937-267-0.
  36. ^ a b c d Godinot, M.; Blondel, C.; Escarguel, G.; Lézin, C.; Pélissié, T.; Tabuce, R.; Vidalenc, D. (2021). "Primates and Plesiadapiformes from Cos (Eocene; Quercy, France)" (PDF). Geobios. 66–67: 153–176. Bibcode:2021Geobi..66..153G. doi:10.1016/j.geobios.2021.03.004. S2CID 235509821.
  37. ^ Mattingly, S. G.; Beard, K. C.; Coster, P. M. C.; Salem, M. J.; Chaimanee, Y.; Jaeger, J.-J. (2021). "A new parapithecine (Primates: Anthropoidea) from the early Oligocene of Libya supports parallel evolution of large body size among parapithecids". Journal of Human Evolution. 153: Article 102957. doi:10.1016/j.jhevol.2021.102957. PMID 33652264. S2CID 232103317.
  38. ^ Fulwood, E. L.; Shan, S.; Winchester, J. M.; Gao, T.; Kirveslahti, H.; Daubechies, I.; Boyer, D. M. (2021). "Reconstructing dietary ecology of extinct strepsirrhines (Primates, Mammalia) with new approaches for characterizing and analyzing tooth shape". Paleobiology. 47 (4): 612–631. Bibcode:2021Pbio...47..612F. doi:10.1017/pab.2021.9. S2CID 233672224.
  39. ^ O'Leary, M. A. (2021). "A dense sample of fossil primates (Adapiformes, Notharctidae, Notharctinae) from the Early Eocene Willwood Formation, Wyoming: Documentation of gradual change in tooth area and shape through time". American Journal of Physical Anthropology. 174 (4): 728–743. doi:10.1002/ajpa.24177. PMID 33483945. S2CID 231688788.
  40. ^ Fulwood, E. L.; Shan, S.; Winchester, J. M.; Kirveslahti, H.; Ravier, R.; Kovalsky, S.; Daubechies, I.; Boyer, D. M. (2021). "Insights from macroevolutionary modelling and ancestral state reconstruction into the radiation and historical dietary ecology of Lemuriformes (Primates, Mammalia)". BMC Ecology and Evolution. 21 (1): Article number 60. doi:10.1186/s12862-021-01793-x. PMC 8061064. PMID 33882818.
  41. ^ Marciniak, S.; Mughal, M. R.; Godfrey, L. R.; Bankoff, R. J.; Randrianatoandro, H.; Crowley, B. E.; Bergey, C. M.; Muldoon, K. M.; Randrianasy, J.; Raharivololona, B. M.; Schuster, S. C.; Malhi, R. S.; Yoder, A. D.; Louis, E. E.; Kistler, L.; Perry, G. H. (2021). "Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant, "subfossil" koala lemur Megaladapis edwardsi". Proceedings of the National Academy of Sciences of the United States of America. 118 (26): e2022117118. Bibcode:2021PNAS..11822117M. doi:10.1073/pnas.2022117118. PMC 8255780. PMID 34162703.
  42. ^ Thiery, G.; Gibert, C.; Guy, F.; Lazzari, V.; Geraads, D.; Spassov, N.; Merceron, G. (2021). "From leaves to seeds? The dietary shift in late Miocene colobine monkeys of southeastern Europe". Evolution. 75 (8): 1983–1997. doi:10.1111/evo.14283. PMID 34131927. S2CID 235449782.
  43. ^ Fannin, L. D.; Yeakel, J. D.; Venkataraman, V. V.; Seyoum, C.; Geraads, D.; Fashing, P. J.; Nguyen, N.; Fox-Dobbs, K.; Dominy, N. J. (2021). "Carbon and strontium isotope ratios shed new light on the paleobiology and collapse of Theropithecus, a primate experiment in graminivory" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 572: Article 110393. Bibcode:2021PPP...57210393F. doi:10.1016/j.palaeo.2021.110393. S2CID 234853117.
  44. ^ DeMiguel, D.; Domingo, L.; Sánchez, I. M.; Casanovas-Vilar, I.; Robles, J. M.; Alba, D. M. (2021). "Palaeoecological differences underlie rare co-occurrence of Miocene European primates". BMC Biology. 19 (1): Article number 6. doi:10.1186/s12915-020-00939-5. PMC 7814646. PMID 33461551.
  45. ^ Arias-Martorell, J.; Almécija, S.; Urciuoli, A.; Nakatsukasa, M.; Moyà-Solà, S.; Alba, D. M. (2021). "A proximal radius of Barberapithecus huerzeleri from Castell de Barberà: Implications for locomotor diversity among pliopithecoids". Journal of Human Evolution. 157: Article 103032. doi:10.1016/j.jhevol.2021.103032. PMID 34233242. S2CID 235767891.
  46. ^ Urciuoli, A.; Zanolli, C.; Beaudet, A.; Pina, M.; Almécija, S.; Moyà-Solà, S.; Alba, D. M. (2021). "A comparative analysis of the vestibular apparatus in Epipliopithecus vindobonensis: Phylogenetic implications". Journal of Human Evolution. 151: Article 102930. doi:10.1016/j.jhevol.2020.102930. hdl:2263/82957. PMID 33422741. S2CID 231576237.
  47. ^ Bouchet, F.; Urciuoli, A.; Beaudet, A.; Pina, M.; Moyà-Solà, S.; Alba, D. M. (2021). "Comparative anatomy of the carotid canal in the Miocene small-bodied catarrhine Pliobates cataloniae". Journal of Human Evolution. 161: Article 103073. doi:10.1016/j.jhevol.2021.103073. hdl:2263/82958. PMID 34628300. S2CID 238581331.
  48. ^ Urciuoli, A; Zanolli, C.; Almécija, S.; Beaudet, A.; Dumoncel, J.; Morimoto, N.; Nakatsukasa, M; Moyà-Solà, S.; Begun, D. R.; Alba, D. M. (2021). "Reassessment of the phylogenetic relationships of the late Miocene apes Hispanopithecus and Rudapithecus based on vestibular morphology". Proceedings of the National Academy of Sciences of the United States of America. 118 (5): e2015215118. Bibcode:2021PNAS..11815215U. doi:10.1073/pnas.2015215118. PMC 7865142. PMID 33495351.
  49. ^ Fortuny, J.; Zanolli, C.; Bernardini, F.; Tuniz, C.; Alba, D. M. (2021). "Dryopithecine palaeobiodiversity in the Iberian Miocene revisited on the basis of molar endostructural morphology" (PDF). Palaeontology. 64 (4): 531–554. Bibcode:2021Palgy..64..531F. doi:10.1111/pala.12540. S2CID 236386603.
  50. ^ Ioannidou, M.; Koufos, G. D.; de Bonis, L.; Harvati, K. (2021). "3D geometric morphometrics analysis of mandibular fragments of Ouranopithecus macedoniensis from the late Miocene deposits of Central Macedonia, Greece". American Journal of Physical Anthropology. 177 (1): 48–62. doi:10.1002/ajpa.24420. PMID 36787758. S2CID 239523081.
  51. ^ Pina, M.; Kikuchi, Y.; Nakatsukasa, M.; Nakano, Y.; Kunimatsu, Y.; Ogihara, N.; Shimizu, D.; Takano, T.; Tsujikawa, H.; Ishida, H. (2021). "New femoral remains of Nacholapithecus kerioi: Implications for intraspecific variation and Miocene hominoid evolution" (PDF). Journal of Human Evolution. 155: Article 102982. doi:10.1016/j.jhevol.2021.102982. PMID 33862402. S2CID 233278079.
  52. ^ Kirscher, U.; El Atfy, H.; Gärtner, A.; Dallanave, E.; Munz, P.; Niedźwiedzki, G.; Athanassiou, A.; Fassoulas, C.; Linnemann, U.; Hofmann, M.; Bennett, M.; Ahlberg, P. E.; Böhme, M. (2021). "Age constraints for the Trachilos footprints from Crete". Scientific Reports. 11 (1): Article number 19427. Bibcode:2021NatSR..1119427K. doi:10.1038/s41598-021-98618-0. PMC 8505496. PMID 34635686.
  53. ^ Jiang, Q.; Zhao, L.; Guo, L.; Wu, Y. (2021). "First direct evidence of conservative foraging ecology of early Gigantopithecus blacki (~2 Ma) in Guangxi, southern China". American Journal of Physical Anthropology. 176 (1): 93–108. doi:10.1002/ajpa.24300. PMID 33964022. S2CID 233998055.
  54. ^ Fellows Yates, J. A.; Velsko, I. M.; Aron, F.; Posth, C.; Hofman, C. A.; Austin, R. M.; Parker, C. E.; Mann, A. E.; Nägele, K.; Arthur, K. W.; Arthur, J. W.; Bauer, C. C.; Crevecoeur, I.; Cupillard, C.; Curtis, M. C.; Dalén, L.; Díaz-Zorita Bonilla, M.; Díez Fernández-Lomana, J. C.; Drucker, D. G.; Escribano Escrivá, E.; Francken, M.; Gibbon, V. E.; González Morales, M. R.; Grande Mateu, A.; Harvati, K.; Henry, A. G.; Humphrey, L.; Menéndez, M.; Mihailović, D.; Peresani, M.; Rodríguez Moroder, S.; Roksandic, M.; Rougier, H.; Sázelová, S.; Stock, J. T.; Straus, L. G.; Svoboda, J.; Teßmann, B.; Walker, M. J.; Power, R. C.; Lewis, C. M.; Sankaranarayanan, K.; Guschanski, K.; Wrangham, R. W.; Dewhirst, F. E.; Salazar-García, D. C.; Krause, J.; Herbig, A.; Warinner, C. (2021). "The evolution and changing ecology of the African hominid oral microbiome". Proceedings of the National Academy of Sciences of the United States of America. 118 (20): e2021655118. Bibcode:2021PNAS..11821655F. doi:10.1073/pnas.2021655118. PMC 8157933. PMID 33972424.
  55. ^ Ben-Dor, M.; Sirtoli, R.; Barkai, R. (2021). "Human oral microbiome cannot predict Pleistocene starch dietary level, and dietary glucose consumption is not essential for brain growth". Proceedings of the National Academy of Sciences of the United States of America. 118 (37): e2110764118. Bibcode:2021PNAS..11810764B. doi:10.1073/pnas.2110764118. PMC 8449337. PMID 34475259.
  56. ^ Warinner, C.; Velsko, I. M.; Fellows Yates, J. A. (2021). "Reply to Ben-Dor et al.: Oral bacteria of Neanderthals and modern humans exhibit evidence of starch adaptation". Proceedings of the National Academy of Sciences of the United States of America. 118 (37): e2112526118. Bibcode:2021PNAS..11812526W. doi:10.1073/pnas.2112526118. PMC 8449415. PMID 34475260.
  57. ^ Karakostis, F. A.; Haeufle, D.; Anastopoulou, I.; Moraitis, K.; Hotz, G.; Tourloukis, V.; Harvati, K. (2021). "Biomechanics of the human thumb and the evolution of dexterity". Current Biology. 31 (6): 1317–1325.e8. doi:10.1016/j.cub.2020.12.041. PMC 7987722. PMID 33513351.
  58. ^ Püschel, H. P.; Bertrand, O. C.; O'Reilly, J. E.; Bobe, R.; Püschel, T. A. (2021). "Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution". Nature Ecology & Evolution. 5 (6): 808–819. Bibcode:2021NatEE...5..808P. doi:10.1038/s41559-021-01431-1. hdl:20.500.11820/35151870-c7b5-477e-aca8-2c75c8382002. PMID 33795855. S2CID 232764044.
  59. ^ McNutt, E. J.; Hatala, K. G.; Miller, C.; Adams, J.; Casana, J.; Deane, A. S.; Dominy, N. J.; Fabian, K.; Fannin, L. D.; Gaughan, S.; Gill, S. V.; Gurtu, J.; Gustafson, E.; Hill, A. C.; Johnson, C.; Kallindo, S.; Kilham, B.; Kilham, P.; Kim, E.; Liutkus-Pierce, C.; Maley, B.; Prabhat, A.; Reader, J.; Rubin, S.; Thompson, N. E.; Thornburg, R.; Williams-Hatala, E. M.; Zimmer, B.; Musiba, C. M.; DeSilva, J. M. (2021). "Footprint evidence of early hominin locomotor diversity at Laetoli, Tanzania". Nature. 600 (7889): 468–471. Bibcode:2021Natur.600..468M. doi:10.1038/s41586-021-04187-7. PMC 8674131. PMID 34853470. S2CID 244823826.
  60. ^ Prang, T. C.; Ramirez, K.; Grabowski, M.; Williams, S. A. (2021). "Ardipithecus hand provides evidence that humans and chimpanzees evolved from an ancestor with suspensory adaptations". Science Advances. 7 (9): eabf2474. Bibcode:2021SciA....7.2474P. doi:10.1126/sciadv.abf2474. PMC 7904256. PMID 33627435.
  61. ^ Suwa, G.; Sasaki, T.; Semaw, S.; Rogers, M. J.; Simpson, S. W.; Kunimatsu, Y.; Nakatsukasa, M.; Kono, R. T.; Zhang, Y.; Beyene, Y.; Asfaw, B.; White, T. D. (2021). "Canine sexual dimorphism in Ardipithecus ramidus was nearly human-like". Proceedings of the National Academy of Sciences of the United States of America. 118 (49): e2116630118. Bibcode:2021PNAS..11816630S. doi:10.1073/pnas.2116630118. PMC 8670482. PMID 34853174. S2CID 244800398.
  62. ^ Kuman, K.; Granger, D. E.; Gibbon, R. J.; Pickering, T. R.; Caruana, M. V.; Bruxelles, L.; Clarke, R. J.; Heaton, J. L.; Stratford, D.; Brain, C. K. (2021). "A new absolute date from Swartkrans Cave for the oldest occurrences of Paranthropus robustus and Oldowan stone tools in South Africa". Journal of Human Evolution. 156: Article 103000. doi:10.1016/j.jhevol.2021.103000. PMID 34020297. S2CID 235092783.
  63. ^ Towle, I.; Irish, J. D.; Loch, C. (2021). "Paranthropus robustus tooth chipping patterns do not support regular hard food mastication" (PDF). Journal of Human Evolution. 158: Article 103044. doi:10.1016/j.jhevol.2021.103044. PMID 34303928.
  64. ^ Hanon, R.; d'Errico, F.; Backwell, L.; Prat, S.; Péan, S.; Patou-Mathis, M. (2021). "New evidence of bone tool use by Early Pleistocene hominins from Cooper's D, Bloubank Valley, South Africa" (PDF). Journal of Archaeological Science: Reports. 39: Article 103129. Bibcode:2021JArSR..39j3129H. doi:10.1016/j.jasrep.2021.103129. S2CID 237663129.
  65. ^ Hanon, R.; Patou-Mathis, M.; Péan, S.; Prat, S.; Cohen, B. F.; Steininger, C. (2021). "Early Pleistocene hominin subsistence behaviors in South Africa: Evidence from the hominin-bearing deposit of Cooper's D (Bloubank Valley, South Africa)". Journal of Human Evolution. 162: Article 103116. doi:10.1016/j.jhevol.2021.103116. PMID 34915399. S2CID 245190048.
  66. ^ Beaudet, A.; Atwood, R. C.; Kockelmann, W.; Fernandez, V.; Connolley, T.; Vo, N. T.; Clarke, R.; Stratford, D. (2021). "Preliminary paleohistological observations of the StW 573 ('Little Foot') skull". eLife. 10: e64804. doi:10.7554/eLife.64804. PMC 7924941. PMID 33648628.
  67. ^ Carlson, K. J.; Green, D. J.; Jashashvili, T.; Pickering, T. R.; Heaton, J. L.; Beaudet, A.; Stratford, D.; Crompton, R.; Kuman, K.; Bruxelles, L.; Clarke, R. J. (2021). "The pectoral girdle of StW 573 ('Little Foot') and its implications for shoulder evolution in the Hominina". Journal of Human Evolution. 158: Article 102983. doi:10.1016/j.jhevol.2021.102983. PMID 33888323.
  68. ^ Dumouchel, L.; Bobe, R.; Wynn, J. G.; Barr, W. A. (2021). "The environments of Australopithecus anamensis at Allia Bay, Kenya: A multiproxy analysis of early Pliocene Bovidae". Journal of Human Evolution. 151: Article 102928. doi:10.1016/j.jhevol.2020.102928. PMID 33453510. S2CID 231628172.
  69. ^ Prabhat, A. M.; Miller, C. K.; Prang, T. C.; Spear, J.; Williams, S. A.; DeSilva, J. M. (2021). "Homoplasy in the evolution of modern human-like joint proportions in Australopithecus afarensis". eLife. 10: e65897. doi:10.7554/eLife.65897. PMC 8116054. PMID 33978569.
  70. ^ Berthaume, M. A.; Kupczik, K. (2021). "Molar biomechanical function in South African hominins Australopithecus africanus and Paranthropus robustus". Interface Focus. 11 (5): Article ID 20200085. doi:10.1098/rsfs.2020.0085. PMC 8361600. PMID 34938434. S2CID 236991162.
  71. ^ Fornai, C.; Krenn, V. A.; Mitteroecker, P.; Webb, N. M.; Haeusler, M. (2021). "Sacrum morphology supports taxonomic heterogeneity of "Australopithecus africanus" at Sterkfontein Member 4". Communications Biology. 4 (1): Article number 347. doi:10.1038/s42003-021-01850-7. PMC 7969745. PMID 33731844.
  72. ^ Williams, S. A.; Prang, T. C.; Meyer, M. R.; Nalley, T. K.; Van Der Merwe, R.; Yelverton, C.; García-Martínez, D.; Russo, G. A.; Ostrofsky, K. R.; Spear, J.; Eyre, J.; Grabowski, M.; Nalla, S.; Bastir, M.; Schmid, P.; Churchill, S. E.; Berger, L. R. (2021). "New fossils of Australopithecus sediba reveal a nearly complete lower back". eLife. 10: e70447. doi:10.7554/eLife.70447. PMC 8610421. PMID 34812141.
  73. ^ Braga, J.; Samir, C.; Fradi, A.; Feunteun, Y.; Jakata, J.; Zimmer, V. A.; Zipfel, B.; Thackeray, J. F.; Macé, M.; Wood, B. A.; Grine, F. E. (2021). "Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies". Scientific Reports. 11 (1): Article number 17018. Bibcode:2021NatSR..1117018B. doi:10.1038/s41598-021-96543-w. PMC 8382707. PMID 34426640.
  74. ^ Parins-Fukuchi, C. (2021). "Morphological and phylogeographic evidence for budding speciation: an example in hominins". Biology Letters. 17 (1): Article ID 20200754. doi:10.1098/rsbl.2020.0754. PMC 7876604. PMID 33465331.
  75. ^ Mercader, J.; Akuku, P.; Boivin, N.; Bugumba, R.; Bushozi, P.; Camacho, A.; Carter, T.; Clarke, S.; Cueva-Temprana, A.; Durkin, P.; Favreau, J.; Fella, K.; Haberle, S.; Hubbard, S.; Inwood, J.; Itambu, M.; Koromo, S.; Lee, P.; Mohammed, A.; Mwambwiga, A; Olesilau, L.; Patalano, R.; Roberts, P.; Rule, S.; Saladie, P.; Siljedal, G.; Soto, M.; Umbsaar, J.; Petraglia, M. (2021). "Earliest Olduvai hominins exploited unstable environments ~ 2 million years ago". Nature Communications. 12 (1): Article number 3. Bibcode:2021NatCo..12....3M. doi:10.1038/s41467-020-20176-2. PMC 7791053. PMID 33414467.
  76. ^ Domínguez-Rodrigo, M.; Baquedano, E.; Organista, E.; Cobo-Sánchez, L.; Mabulla, A.; Maskara, V.; Gidna, A.; Pizarro-Monzo, M.; Aramendi, J.; Galán, A. B.; Cifuentes-Alcobendas, G.; Vegara-Riquelme, B.; Jiménez-García, B.; Abellán, N.; Barba, R.; Uribelarrea, D.; Martín-Perea, D.; Diez-Martin, F.; Maíllo-Fernández, J. M.; Rodríguez-Hidalgo, A.; Courtenay, L.; Mora, R.; Maté-González, M. A.; González-Aguilera, D. (2021). "Early Pleistocene faunivorous hominins were not kleptoparasitic, and this impacted the evolution of human anatomy and socio-ecology". Scientific Reports. 11 (1): Article number 16135. Bibcode:2021NatSR..1116135D. doi:10.1038/s41598-021-94783-4. PMC 8352906. PMID 34373471.
  77. ^ Le Cabec, A.; Colard, T.; Charabidze, D.; Chaussain, C.; Di Carlo, G.; Gaudzinski-Windheuser, S.; Hublin, J.-J.; Melis, R. T.; Pioli, L.; Ramirez-Rozzi, F.; Mussi, M. (2021). "Insights into the palaeobiology of an early Homo infant: multidisciplinary investigation of the GAR IVE hemi-mandible, Melka Kunture, Ethiopia". Scientific Reports. 11 (1): Article number 23087. Bibcode:2021NatSR..1123087L. doi:10.1038/s41598-021-02462-1. PMC 8630034. PMID 34845260.
  78. ^ Scerri, E. M. L.; Frouin, M.; Breeze, P. S.; Armitage, S. J.; Candy, I.; Groucutt, H. S.; Drake, N.; Parton, A.; White, T. S.; Alsharekh, A. M.; Petraglia, M. D. (2021). "The expansion of Acheulean hominins into the Nefud Desert of Arabia". Scientific Reports. 11 (1): Article number 10111. Bibcode:2021NatSR..1110111S. doi:10.1038/s41598-021-89489-6. PMC 8115331. PMID 33980918.
  79. ^ Groucutt, H. S.; White, T. S.; Scerri, E. M. L.; Andrieux, E.; Clark-Wilson, R.; Breeze, P. S.; Armitage, S. J.; Stewart, M.; Drake, N.; Louys, J.; Price, G. J.; Duval, M.; Parton, A.; Candy, I.; Carleton, W. C.; Shipton, C.; Jennings, R. P.; Zahir, M.; Blinkhorn, J.; Blockley, S.; Al-Omari, A.; Alsharekh, A. M.; Petraglia, M. D. (2021). "Multiple hominin dispersals into Southwest Asia over the past 400,000 years". Nature. 597 (7876): 376–380. Bibcode:2021Natur.597..376G. doi:10.1038/s41586-021-03863-y. PMC 8443443. PMID 34471286.
  80. ^ Ben-Dor, M.; Sirtoli, R.; Barkai, R. (2021). "The evolution of the human trophic level during the Pleistocene". American Journal of Physical Anthropology. 175 (S72): 27–56. doi:10.1002/ajpa.24247. PMID 33675083. S2CID 232131317.
  81. ^ Ponce de León, M. S.; Bienvenu, T.; Marom, A.; Engel, S.; Tafforeau, P.; Alatorre Warren, J. L.; Lordkipanidze, D.; Kurniawan, I.; Murti, D. B.; Suriyanto, R. A.; Koesbardiati, T.; Zollikofer, C. P. E. (2021). "The primitive brain of early Homo" (PDF). Science. 372 (6538): 165–171. Bibcode:2021Sci...372..165P. doi:10.1126/science.aaz0032. PMID 33833119. S2CID 233185978.
  82. ^ Will, M.; Krapp, M.; Stock, J. T.; Manica, A. (2021). "Different environmental variables predict body and brain size evolution in Homo". Nature Communications. 12 (1): Article number 4116. Bibcode:2021NatCo..12.4116W. doi:10.1038/s41467-021-24290-7. PMC 8266824. PMID 34238930.
  83. ^ Cook, R. W.; Vazzana, A.; Sorrentino, R.; Benazzi, S.; Smith, A. L.; Strait, D. S.; Ledogar, J. A. (2021). "The cranial biomechanics and feeding performance of Homo floresiensis". Interface Focus. 11 (5): Article ID 20200083. doi:10.1098/rsfs.2020.0083. PMC 8361579. PMID 34938433.
  84. ^ Baab, K. L. (2021). "Reconstructing cranial evolution in an extinct hominin". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202604. doi:10.1098/rspb.2020.2604. PMC 7893262. PMID 33467996.
  85. ^ Baab, K. L.; Nesbitt, A.; Hublin, J.-J.; Neubauer, S. (2021). "Assessing the status of the KNM-ER 42700 fossil using Homo erectus neurocranial development". Journal of Human Evolution. 154: Article 102980. doi:10.1016/j.jhevol.2021.102980. PMID 33794419. S2CID 232762648.
  86. ^ Hammond, A. S.; Mavuso, S. S.; Biernat, M.; Braun, D. R.; Jinnah, Z.; Kuo, S.; Melaku, S.; Wemanya, S. N.; Ndiema, E. K.; Patterson, D. B.; Uno, K. T.; Palcu, D. V. (2021). "New hominin remains and revised context from the earliest Homo erectus locality in East Turkana, Kenya". Nature Communications. 12 (1): Article number 1939. Bibcode:2021NatCo..12.1939H. doi:10.1038/s41467-021-22208-x. PMC 8044126. PMID 33850143.
  87. ^ Baab, K.; Rogers, M.; Bruner, E.; Semaw, S. (2021). "Reconstruction and analysis of the DAN5/P1 and BSN12/P1 Gona Early Pleistocene Homo fossils". Journal of Human Evolution. 162: Article 103102. doi:10.1016/j.jhevol.2021.103102. PMID 34891069. S2CID 245109585.
  88. ^ Dusseldorp, G. L.; Lombard, M. (2021). "Constraining the likely technological niches of late Middle Pleistocene hominins with Homo naledi as case study". Journal of Archaeological Method and Theory. 28 (1): 11–52. doi:10.1007/s10816-020-09501-7. hdl:1887/3146609. S2CID 233323386.
  89. ^ Irish, J. D.; Grabowski, M. (2021). "Relative tooth size, Bayesian inference, and Homo naledi". American Journal of Physical Anthropology. 176 (2): 262–282. doi:10.1002/ajpa.24353. hdl:10852/93027. PMID 34190335. S2CID 235687761.
  90. ^ Brophy, J. K.; Elliott, M. C.; De Ruiter, D. J.; Bolter, D. R.; Churchill, S. E.; Walker, C. S.; Hawks, J.; Berger, L. R. (2021). "Immature Hominin Craniodental Remains From a New Locality in the Rising Star Cave System, South Africa". PaleoAnthropology. 2021: 1–14. doi:10.48738/2021.iss1.64.
  91. ^ Hershkovitz, I.; May, H.; Sarig, R.; Pokhojaev, A.; Grimaud-Hervé, D.; Bruner, E.; Fornai, C.; Quam, R.; Arsuaga, J. L.; Krenn, V. A.; Martinón-Torres, M.; Bermúdez de Castro, J. M.; Martín-Francés, L.; Slon, V.; Albessard-Ball, L.; Vialet, A.; Schüler, T.; Manzi, G.; Profico, A.; Di Vincenzo, F.; Weber, G. W.; Zaidner, Y. (2021). "A Middle Pleistocene Homo from Nesher Ramla, Israel". Science. 372 (6549): 1424–1428. Bibcode:2021Sci...372.1424H. doi:10.1126/science.abh3169. S2CID 235628111.
  92. ^ Zaidner, Y.; Centi, L.; Prévost, M.; Mercier, N.; Falguères, C.; Guérin, G.; Valladas, H.; Richard, M.; Galy, A.; Pécheyran, C.; Tombret, O.; Pons-Branchu, E.; Porat, N.; Shahack-Gross, R.; Friesem, D. E.; Yeshurun, R.; Turgeman-Yaffe, Z.; Frumkin, A.; Herzlinger, G.; Ekshtain, R.; Shemer, M.; Varoner, O.; Sarig, R.; May, H.; Hershkovitz, I. (2021). "Middle Pleistocene Homo behavior and culture at 140,000 to 120,000 years ago and interactions with Homo sapiens". Science. 372 (6549): 1429–1433. Bibcode:2021Sci...372.1429Z. doi:10.1126/science.abh3020. S2CID 235628141.
  93. ^ Marom, A.; Rak, Y. (2021). "Comment on "A Middle Pleistocene Homo from Nesher Ramla, Israel"". Science. 374 (6572): eabl4336. doi:10.1126/science.abl4336. PMID 34855484. S2CID 244840753.
  94. ^ May, H.; Sarig, R.; Pokhojaev, A.; Fornai, C.; Martinón-Torres, M.; Bermúdez de Castro, J. M.; Weber, G. W.; Zaidner, Y.; Hershkovitz, I. (2021). "Response to Comment on "A Middle Pleistocene Homo from Nesher Ramla, Israel"". Science. 374 (6572): eabl5789. doi:10.1126/science.abl5789. PMID 34855476. S2CID 244841367.
  95. ^ García-Martínez, D.; Green, D. J.; Bermúdez de Castro, J. M. (2021). "Evolutionary development of the Homo antecessor scapulae (Gran Dolina site, Atapuerca) suggests a modern-like development for Lower Pleistocene Homo". Scientific Reports. 11 (1): Article number 4102. Bibcode:2021NatSR..11.4102G. doi:10.1038/s41598-021-83039-w. PMC 7892855. PMID 33602966.
  96. ^ Schwartz, J.; Pantoja-Pérez, A.; Arsuaga, J. L. (2021). "The nasal region of the ~417 ka Sima de los Huesos (Sierra de Atapuerca, Spain) Hominin: New terminology and implications for later human evolution". The Anatomical Record. 305 (8): 1991–2029. doi:10.1002/ar.24698. PMID 34166582. S2CID 235633520.
  97. ^ Bermúdez de Castro, J. M.; Martínez de Pinillos, M.; Martín-Francés, L.; Modesto-Mata, M.; García-Campos, C.; Arsuaga, J. L.; Martinón-Torres, M. (2021). "Dental remains of the Middle Pleistocene hominins from the Sima de los Huesos site (Sierra de Atapuerca, Spain): Mandibular dentition". The Anatomical Record. in press. doi:10.1002/ar.24840. PMID 34851548. S2CID 244825479.
  98. ^ Bermúdez de Castro, J. M.; Martínez de Pinillos, M.; Martín-Francés, L.; Modesto-Mata, M.; García-Campos, C.; Arsuaga, J. L.; Martinón-Torres, M. (2021). "Dental remains of the Middle Pleistocene hominins from the Sima de los Huesos site (Sierra de Atapuerca, Spain): Maxillary dentition". The Anatomical Record. in press. doi:10.1002/ar.24841. PMID 34866354. S2CID 244908239.
  99. ^ White, S.; Pope, M.; Hillson, S.; Soligo, C. (2021). "Geometric morphometric variability in the supraorbital and orbital region of Middle Pleistocene hominins: Implications for the taxonomy and evolution of later Homo". Journal of Human Evolution. 162: Article 103095. doi:10.1016/j.jhevol.2021.103095. PMID 34847365. S2CID 244751943.
  100. ^ Brown, S.; Massilani, D.; Kozlikin, M. B.; Shunkov, M. V.; Derevianko, A. P.; Stoessel, A.; Jope-Street, B.; Meyer, M.; Kelso, J.; Pääbo, S.; Higham, T.; Douka, K. (2021). "The earliest Denisovans and their cultural adaptation". Nature Ecology & Evolution. 6 (1): 28–35. Bibcode:2021NatEE...6...28B. doi:10.1038/s41559-021-01581-2. PMC 7612221. PMID 34824388. S2CID 244661284.
  101. ^ Teixeira, J. C.; Jacobs, G. S.; Stringer, C.; Tuke, J.; Hudjashov, G.; Purnomo, G. A.; Sudoyo, H.; Cox, M. P.; Tobler, R.; Turney, C. S. M.; Cooper, A.; Helgen, K. M. (2021). "Widespread Denisovan ancestry in Island Southeast Asia but no evidence of substantial super-archaic hominin admixture". Nature Ecology & Evolution. 5 (5): 616–624. Bibcode:2021NatEE...5..616T. doi:10.1038/s41559-021-01408-0. PMID 33753899. S2CID 232323599.
  102. ^ Bloos, G. (2021). "The stratigraphic position of Homo steinheimensis (late Middle Pleistocene, SW Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 302 (2): 169–208. doi:10.1127/njgpa/2021/1027. S2CID 243901203.
  103. ^ McGrath, K.; Limmer, L. S.; Lockey, A.-L.; Guatelli-Steinberg, D.; Reid, D. J.; Witzel, C.; Bocaege, E.; McFarlin, S. C.; El Zaatari, S. (2021). "3D enamel profilometry reveals faster growth but similar stress severity in Neanderthal versus Homo sapiens teeth". Scientific Reports. 11 (1): Article number 522. doi:10.1038/s41598-020-80148-w. PMC 7804262. PMID 33436796.
  104. ^ Richards, M. P.; Mannino, M. A.; Jaouen, K.; Dozio, A.; Hublin, J.-J.; Peresani, M. (2021). "Strontium isotope evidence for Neanderthal and modern human mobility at the upper and middle palaeolithic site of Fumane Cave (Italy)". PLOS ONE. 16 (8): e0254848. Bibcode:2021PLoSO..1654848R. doi:10.1371/journal.pone.0254848. PMC 8384160. PMID 34428206.
  105. ^ Conde-Valverde, M.; Martínez, I.; Quam, R. M.; Rosa, M.; Velez, A. D.; Lorenzo, C.; Jarabo, P.; Bermúdez de Castro, J. M.; Carbonell, E.; Arsuaga, J. L. (2021). "Neanderthals and Homo sapiens had similar auditory and speech capacities". Nature Ecology & Evolution. 5 (5): 609–615. Bibcode:2021NatEE...5..609C. doi:10.1038/s41559-021-01391-6. PMID 33649543. S2CID 232090739.
  106. ^ Sorrentino, R.; Stephens, N. B.; Marchi, D.; DeMars, L. J. D.; Figus, C.; Bortolini, E.; Badino, F.; Saers, J. P. P.; Bettuzzi, M.; Boschin, F.; Capecchi, G.; Feletti, F.; Guarnieri, T.; May, H.; Morigi, M. P.; Parr, W.; Ricci, S.; Ronchitelli, A.; Stock, J. T.; Carlson, K. J.; Ryan, T. M.; Belcastro, M. G.; Benazzi, M. (2021). "Unique foot posture in Neanderthals reflects their body mass and high mechanical stress". Journal of Human Evolution. 161: Article 103093. doi:10.1016/j.jhevol.2021.103093. hdl:11585/840852. PMID 34749003. S2CID 243811194.
  107. ^ Vernot, B.; Zavala, E. I.; Gómez-Olivencia, A.; Jacobs, Z.; Slon, V.; Mafessoni, F.; Romagné, F.; Pearson, A.; Petr, M.; Sala, N.; Pablos, A.; Aranburu, A.; Bermúdez de Castro, J. M.; Carbonell, E.; Li, B.; Krajcarz, M. T.; Krivoshapkin, A. I.; Kolobova, K. A.; Kozlikin, M. B.; Shunkov, M. V.; Derevianko, A. P.; Viola, B.; Grote, S.; Essel, E.; Herráez, D. L.; Nagel, S.; Nickel, B.; Richter, J.; Schmidt, A.; Peter, B.; Kelso, J.; Roberts, R. G.; Arsuaga, J.-L.; Meyer, M. (2021). "Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments". Science. 372 (6542): eabf1667. doi:10.1126/science.abf1667. PMID 33858989. S2CID 233260228.
  108. ^ Banks, W. E.; Moncel, M.-H.; Raynal, J.-P.; Cobos, M. E.; Romero-Alvarez, D.; Woillez, M.-N.; Faivre, J.-P.; Gravina, B.; d'Errico, F.; Locht, J.-L.; Santos, F. (2021). "An ecological niche shift for Neanderthal populations in Western Europe 70,000 years ago". Scientific Reports. 11 (1): Article number 5346. Bibcode:2021NatSR..11.5346B. doi:10.1038/s41598-021-84805-6. PMC 7935894. PMID 33674720.
  109. ^ Blinkhorn, J.; Zanolli, C.; Compton, T.; Groucutt, H. S.; Scerri, E. M. L.; Crété, L.; Stringer, C.; Petraglia, M. D.; Blockley, S. (2021). "Nubian Levallois technology associated with southernmost Neanderthals". Scientific Reports. 11 (1): Article number 2869. Bibcode:2021NatSR..11.2869B. doi:10.1038/s41598-021-82257-6. PMC 7884387. PMID 33589653.
  110. ^ Hallinan, E.; Barzilai, O.; Bicho, N.; Cascalheira, J.; Demidenko, Y.; Goder-Goldberger, M.; Hovers, E.; Marks, A.; Oron, M.; Rose, J. (2022). "No direct evidence for the presence of Nubian Levallois technology and its association with Neanderthals at Shukbah Cave". Scientific Reports. 12 (1): Article number 1204. Bibcode:2022NatSR..12.1204H. doi:10.1038/s41598-022-05072-7. PMC 8786851. PMID 35075192.
  111. ^ Blinkhorn, J.; Zanolli, C.; Compton, T.; Groucutt, H. S.; Scerri, E. M. L.; Crété, L.; Stringer, C.; Petraglia, M. D.; Blockley, S. (2022). "Reply to: 'No direct evidence for the presence of Nubian Levallois technology and its association with Neanderthals at Shukbah Cave'". Scientific Reports. 12 (1): Article number 1208. Bibcode:2022NatSR..12.1208B. doi:10.1038/s41598-022-05049-6. PMC 8786945. PMID 35075170.
  112. ^ Roebroeks, W.; MacDonald, K.; Scherjon, F.; Bakels, C.; Kindler, L.; Nikulina, A.; Pop, E.; Gaudzinski-Windheuser, S. (2021). "Landscape modification by Last Interglacial Neanderthals". Science Advances. 7 (51): eabj5567. Bibcode:2021SciA....7.5567R. doi:10.1126/sciadv.abj5567. PMC 8673775. PMID 34910514.
  113. ^ Mahoney, P.; McFarlane, G.; Smith, B. H.; Miszkiewicz, J. J.; Cerrito, P.; Liversidge, H.; Mancini, L.; Dreossi, D.; Veneziano, A.; Bernardini, F.; Cristiani, E.; Behie, A.; Coppa, A.; Bondioli, L.; Frayer, D. W.; Radovčić, D.; Nava, A. (2021). "Growth of Neanderthal infants from Krapina (120–130 ka), Croatia". Proceedings of the Royal Society B: Biological Sciences. 288 (1963): Article ID 20212079. doi:10.1098/rspb.2021.2079. PMC 8611323. PMID 34814754. S2CID 244491559.
  114. ^ Leder, D.; Hermann, R.; Hüls, M.; Russo, G.; Hoelzmann, P.; Nielbock, R.; Böhner, U.; Lehmann, J.; Meier, M.; Schwalb, A.; Tröller-Reimer, A.; Koddenberg, T.; Terberger, T. (2021). "A 51,000-year-old engraved bone reveals Neanderthals' capacity for symbolic behaviour". Nature Ecology & Evolution. 5 (9): 1273–1282. Bibcode:2021NatEE...5.1273L. doi:10.1038/s41559-021-01487-z. PMID 34226702. S2CID 235746596.
  115. ^ Rothschild, B.; Haeusler, M. (2021). "Possible vertebral brucellosis infection in a Neanderthal". Scientific Reports. 11 (1): Article number 19846. Bibcode:2021NatSR..1119846R. doi:10.1038/s41598-021-99289-7. PMC 8494896. PMID 34615929.
  116. ^ Pitarch Martí, A.; Zilhão, J.; d'Errico, F.; Cantalejo-Duarte, P.; Domínguez-Bella, S.; Fullola, J. M.; Weniger, G. C.; Ramos-Muñoz, J. (2021). "The symbolic role of the underground world among Middle Paleolithic Neanderthals". Proceedings of the National Academy of Sciences of the United States of America. 118 (33): e2021495118. Bibcode:2021PNAS..11821495P. doi:10.1073/pnas.2021495118. PMC 8379954. PMID 34341069.
  117. ^ Devièse, T.; Abrams, G.; Hajdinjak, M.; Pirson, S.; De Groote, I.; Di Modica, K.; Toussaint, M.; Fischer, V.; Comeskey, D.; Spindler, L.; Meyer, M.; Semal, P.; Higham, T. (2021). "Reevaluating the timing of Neanderthal disappearance in Northwest Europe". Proceedings of the National Academy of Sciences of the United States of America. 118 (12): e2022466118. Bibcode:2021PNAS..11822466D. doi:10.1073/pnas.2022466118. PMC 7999949. PMID 33798098.
  118. ^ Van Peer, P. (2021). "The stratigraphic context of Spy Cave and the timing of Neanderthal disappearance in Northwest Europe". Proceedings of the National Academy of Sciences of the United States of America. 118 (26): e2106335118. Bibcode:2021PNAS..11806335V. doi:10.1073/pnas.2106335118. PMC 8255951. PMID 34155119.
  119. ^ Devièse, T.; Abrams, G.; Hajdinjak, M.; Pirson, S.; De Groote, I.; Di Modica, K.; Toussaint, M.; Fischer, V.; Comeskey, D.; Spindler, L.; Meyer, M.; Semal, P.; Higham, T. (2021). "Reply to Van Peer: Direct radiocarbon dating and ancient genomic analysis reveal the true age of the Neanderthals at Spy Cave". Proceedings of the National Academy of Sciences of the United States of America. 118 (26): e2107116118. Bibcode:2021PNAS..11807116D. doi:10.1073/pnas.2107116118. PMC 8256027. PMID 34155120.
  120. ^ Salazar-García, D. C.; Power, R. C.; Rudaya, N.; Kolobova, K.; Markin, S.; Krivoshapkin, A.; Henry, A. G.; Richards, M. P.; Viola, B. (2021). "Dietary evidence from Central Asian Neanderthals: A combined isotope and plant microremains approach at Chagyrskaya Cave (Altai, Russia)". Journal of Human Evolution. 156: Article 102985. doi:10.1016/j.jhevol.2021.102985. hdl:10810/52528. PMID 34051612. S2CID 235248744.
  121. ^ Bergström, A.; Stringer, C.; Hajdinjak, M.; Scerri, E. M. L.; Skoglund, P. (2021). "Origins of modern human ancestry". Nature. 590 (7845): 229–237. Bibcode:2021Natur.590..229B. doi:10.1038/s41586-021-03244-5. PMID 33568824. S2CID 231883210.
  122. ^ Niespolo, E. M.; WoldeGabriel, G.; Hart, W. K.; Renne, P. R.; Sharp, W. D.; Shackley, M. S.; Ambrose, S. H.; Asfaw, B.; Beyene, Y.; Brasil, M. F.; Carlson, J. P.; Sahle, Y.; White, T. D. (2021). "Integrative geochronology calibrates the Middle and Late Stone Ages of Ethiopia's Afar Rift". Proceedings of the National Academy of Sciences of the United States of America. 118 (50): e2116329118. Bibcode:2021PNAS..11816329N. doi:10.1073/pnas.2116329118. PMC 8685921. PMID 34873047. S2CID 244922505.
  123. ^ Wilkins, J.; Schoville, B. J.; Pickering, R.; Gliganic, L.; Collins, B.; Brown, K. S.; von der Meden, J.; Khumalo, W.; Meyer, M. C.; Maape, S.; Blackwood, A. F.; Hatton, A. (2021). "Innovative Homo sapiens behaviours 105,000 years ago in a wetter Kalahari". Nature. 592 (7853): 248–252. Bibcode:2021Natur.592..248W. doi:10.1038/s41586-021-03419-0. PMID 33790469. S2CID 232483324.
  124. ^ Hallett, E. Y.; Marean, C. W.; Steele, T. E.; Álvarez-Fernández, E.; Jacobs, Z.; Cerasoni, J. N.; Aldeias, V.; Scerri, E. M. L.; Olszewski, D. I.; El Hajraoui, M. A.; Dibble, H. L. (2021). "A worked bone assemblage from 120,000–90,000 year old deposits at Contrebandiers Cave, Atlantic Coast, Morocco". iScience. 24 (9): Article 102988. Bibcode:2021iSci...24j2988H. doi:10.1016/j.isci.2021.102988. PMC 8478944. PMID 34622180.
  125. ^ Martinón-Torres, M.; d'Errico, F.; Santos, E.; Álvaro Gallo, A.; Amano, N.; Archer, W.; Armitage, S. J.; Arsuaga, J. L.; Bermúdez de Castro, J. M.; Blinkhorn, J.; Crowther, A.; Douka, K.; Dubernet, S.; Faulkner, P.; Fernández-Colón, P.; Kourampas, N.; González García, J.; Larreina, D.; Le Bourdonnec, F.-X.; MacLeod, G.; Martín-Francés, L.; Massilani, D.; Mercader, J.; Miller, J. M.; Ndiema, E.; Notario, B.; Pitarch Martí, A.; Prendergast, M. E.; Queffelec, A.; Rigaud, S.; Roberts, P.; Shoaee, M. J.; Shipton, C.; Simpson, I.; Boivin, N.; Petraglia, M. D. (2021). "Earliest known human burial in Africa". Nature. 593 (7857): 95–100. Bibcode:2021Natur.593...95M. doi:10.1038/s41586-021-03457-8. hdl:10072/413039. PMID 33953416. S2CID 233871256.
  126. ^ Miller, J. M.; Wang, Y. V. (2021). "Ostrich eggshell beads reveal 50,000-year-old social network in Africa". Nature. 601 (7892): 234–239. doi:10.1038/s41586-021-04227-2. PMC 8755535. PMID 34931044. S2CID 245357483.
  127. ^ Hajdinjak, M.; Mafessoni, F.; Skov, L.; Vernot, B.; Hübner, A.; Fu, Q.; Essel, E.; Nagel, S.; Nickel, B.; Richter, J.; Moldovan, O. T.; Constantin, S.; Endarova, E.; Zahariev, N.; Spasov, R.; Welker, F.; Smith, G. M.; Sinet-Mathiot, V.; Paskulin, L.; Fewlass, H.; Talamo, S.; Rezek, Z.; Sirakova, S.; Sirakov, N.; McPherron, S. P.; Tsanova, T.; Hublin, J.-J.; Peter, B. M.; Meyer, M.; Skoglund, P.; Kelso, J.; Pääbo, S. (2021). "Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry". Nature. 592 (7853): 253–257. Bibcode:2021Natur.592..253H. doi:10.1038/s41586-021-03335-3. PMC 8026394. PMID 33828320.
  128. ^ Pederzani, S.; Britton, K.; Aldeias, V.; Bourgon, N.; Fewlass, H.; Lauer, T.; McPherron, S. P.; Rezek, Z.; Sirakov, N.; Smith, G. M.; Spasov, R.; Tran, N.-H.; Tsanova, T.; Hublin, J.-J. (2021). "Subarctic climate for the earliest Homo sapiens in Europe". Science Advances. 7 (39): eabi4642. Bibcode:2021SciA....7.4642P. doi:10.1126/sciadv.abi4642. PMC 8457653. PMID 34550733.
  129. ^ Prüfer, K.; Posth, C.; Yu, H.; Stoessel, A.; Spyrou, M. A.; Deviese, T.; Mattonai, M.; Ribechini, E.; Higham, T.; Velemínský, P.; Brůžek, J.; Krause, J. (2021). "A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia". Nature Ecology & Evolution. 5 (6): 820–825. Bibcode:2021NatEE...5..820P. doi:10.1038/s41559-021-01443-x. PMC 8175239. PMID 33828249.
  130. ^ Svensson, E.; Günther, T.; Hoischen, A.; Hervella, M.; Munters, A. R.; Ioana, M.; Ridiche, F.; Edlund, H.; van Deuren, R. C.; Soficaru, A.; de-la-Rua, C.; Netea, M. G.; Jakobsson, M. (2021). "Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe". Current Biology. 31 (14): 2973–2983.e9. doi:10.1016/j.cub.2021.04.045. hdl:10810/52864. PMID 34010592. S2CID 234793812.
  131. ^ Ledoux, L.; Berillon, G.; Fourment, N.; Muth, X.; Jaubert, J. (2021). "Evidence of the use of soft footwear in the Gravettian cave of Cussac (Dordogne, France)". Scientific Reports. 11 (1): Article number 22727. Bibcode:2021NatSR..1122727L. doi:10.1038/s41598-021-02127-z. PMC 8610977. PMID 34815459.
  132. ^ Stansfield, E.; Mitteroecker, P.; Vasilyev, S. Y.; Vasilyev, S.; Butaric, L. N. (2021). "Respiratory adaptation to climate in modern humans and Upper Palaeolithic individuals from Sungir and Mladeč". Scientific Reports. 11 (1): Article number 7997. Bibcode:2021NatSR..11.7997S. doi:10.1038/s41598-021-86830-x. PMC 8042039. PMID 33846400.
  133. ^ Sun, X.; Wen, S.; Lu, C.; Zhou, B.; Curnoe, D.; Lu, H.; Li, H.; Wang, W.; Cheng, H.; Yi, S.; Jia, X.; Du, P.; Xu, X.; Lu, Y.; Lu, Y.; Zheng, H.; Zhang, H.; Sun, C.; Wei, L.; Han, F.; Huang, J.; Edwards, R. L.; Jin, L.; Li, H. (2021). "Ancient DNA and multimethod dating confirm the late arrival of anatomically modern humans in southern China". Proceedings of the National Academy of Sciences of the United States of America. 118 (8): e2019158118. Bibcode:2021PNAS..11819158S. doi:10.1073/pnas.2019158118. PMC 7923607. PMID 33558418.
  134. ^ Martinón-Torres, M.; Cai, Y.; Tong, H.; Pei, S.; Xing, S.; Bermúdez de Castro, J. M.; Wu, X.; Liu, W. (2021). "On the misidentification and unreliable context of the new "human teeth" from Fuyan Cave (China)". Proceedings of the National Academy of Sciences of the United States of America. 118 (22): e2102961118. Bibcode:2021PNAS..11802961M. doi:10.1073/pnas.2102961118. PMC 8179210. PMID 34031253.
  135. ^ Higham, T. F. G.; Douka, K. (2021). "The reliability of late radiocarbon dates from the Paleolithic of southern China". Proceedings of the National Academy of Sciences of the United States of America. 118 (22): e2103798118. Bibcode:2021PNAS..11803798H. doi:10.1073/pnas.2103798118. PMC 8179157. PMID 34031254.
  136. ^ Curnoe, D.; Li, H.; Zhou, B.; Sun, C.; Du, P.; Wen, S.; Sun, X.; Li, H. (2021). "Reply to Martinón-Torres et al. and Higham and Douka: Refusal to acknowledge dating complexities of Fuyan Cave strengthens our case". Proceedings of the National Academy of Sciences of the United States of America. 118 (22): e2104818118. Bibcode:2021PNAS..11804818C. doi:10.1073/pnas.2104818118. PMC 8179181. PMID 34031256.
  137. ^ Bacon, A.-M.; Bourgon, N.; Welker, F.; Cappellini, E.; Fiorillo, D.; Tombret, O.; Nguyen, T. M. H.; Nguyen, A. T.; Sayavonkhamdy, T.; Souksavatdy, V.; Sichanthongtip, P.; Antoine, P.-O.; Duringer, P.; Ponche, J.-L.; Westaway, K.; Joannes-Boyau, R.; Boesch, Q.; Suzzoni, E.; Frangeul, S.; Patole-Edoumba, E.; Zachwieja, A.; Shackelford, L.; Demeter, F.; Hublin, J.-J.; Dufour, É. (2021). "A multi-proxy approach to exploring Homo sapiens' arrival, environments and adaptations in Southeast Asia". Scientific Reports. 11 (1): Article number 21080. Bibcode:2021NatSR..1121080B. doi:10.1038/s41598-021-99931-4. PMC 8548499. PMID 34702921.
  138. ^ Brumm, A.; Oktaviana, A. A.; Burhan, B.; Hakim, B.; Lebe, R.; Zhao, J.; Sulistyarto, P. H.; Ririmasse, M.; Adhityatama, S.; Sumantri, I.; Aubert, M. (2021). "Oldest cave art found in Sulawesi". Science Advances. 7 (3): eabd4648. Bibcode:2021SciA....7.4648B. doi:10.1126/sciadv.abd4648. PMC 7806210. PMID 33523879.
  139. ^ Brumm, A.; Bulbeck, D.; Hakim, B.; Burhan, B.; Oktaviana, A. A.; Sumantri, I.; Zhao, J.; Aubert, M.; Sardi, R.; McGahan, D.; Saiful, A. M.; Adhityatama, S.; Kaifu, Y. (2021). "Skeletal remains of a Pleistocene modern human (Homo sapiens) from Sulawesi". PLOS ONE. 16 (9): e0257273. Bibcode:2021PLoSO..1657273B. doi:10.1371/journal.pone.0257273. PMC 8480874. PMID 34587195.
  140. ^ Finch, D.; Gleadow, A.; Hergt, J.; Heaney, P.; Green, H.; Myers, C.; Veth, P.; Harper, S.; Ouzman, S.; Levchenko, V. A. (2021). "Ages for Australia's oldest rock paintings". Nature Human Behaviour. 5 (3): 310–318. doi:10.1038/s41562-020-01041-0. PMID 33619375. S2CID 232020013.
  141. ^ Bennett, M. R.; Bustos, D.; Pigati, J. S.; Springer, K. B.; Urban, T. M.; Holliday, V. T.; Reynolds, S. C.; Budka, M.; Honke, J. S.; Hudson, A. M.; Fenerty, B.; Connelly, C.; Martinez, P. J.; Santucci, V. L.; Odess, D. (2021). "Evidence of humans in North America during the Last Glacial Maximum" (PDF). Science. 373 (6562): 1528–1531. Bibcode:2021Sci...373.1528B. doi:10.1126/science.abg7586. PMID 34554787. S2CID 237616125.
  142. ^ Madsen, D. B.; Davis, L. G.; Rhode, D.; Oviatt, C. G. (2022). "Comment on "Evidence of humans in North America during the Last Glacial Maximum"". Science. 375 (6577): eabm4678. doi:10.1126/science.abm4678. PMID 35025634. S2CID 245933924.
  143. ^ Pigati, J. S.; Springer, K. B.; Bennett, M. R.; Bustos, D.; Urban, T. M.; Holliday, V. T.; Reynolds, S. C.; Odess, D. (2022). "Response to Comment on "Evidence of humans in North America during the Last Glacial Maximum"". Science. 375 (6577): eabm6987. doi:10.1126/science.abm6987. PMID 35025662. S2CID 245933931.
  144. ^ Eren, M. I.; Meltzer, D. J.; Story, B.; Buchanan, B.; Yeager, D.; Bebber, M. R. (2021). "On the efficacy of Clovis fluted points for hunting proboscideans". Journal of Archaeological Science: Reports. 39: Article 103166. Bibcode:2021JArSR..39j3166E. doi:10.1016/j.jasrep.2021.103166. S2CID 239648122.
  145. ^ Duke, D.; Wohlgemuth, E.; Adams, K. R.; Armstrong-Ingram, A.; Rice, S. K.; Young, D. C. (2021). "Earliest evidence for human use of tobacco in the Pleistocene Americas". Nature Human Behaviour. 6 (2): 183–192. doi:10.1038/s41562-021-01202-9. PMID 34635825. S2CID 238635872.
  146. ^ Scerri, E. M. L.; Niang, K.; Candy, I.; Blinkhorn, J.; Mills, W.; Cerasoni, J. N.; Bateman, M. D.; Crowther, A.; Groucutt, H. S. (2021). "Continuity of the Middle Stone Age into the Holocene". Scientific Reports. 11 (1): Article number 70. doi:10.1038/s41598-020-79418-4. PMC 7801626. PMID 33431997.
  147. ^ Henshilwood, Christopher S.; d'Errico, Francesco; van Niekerk, Karen L.; Dayet, Laure; Queffelec, Alain; Pollarolo, Luca (October 2018). "An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa" (PDF). Nature. 562 (7725): 115–118. Bibcode:2018Natur.562..115H. doi:10.1038/s41586-018-0514-3. ISSN 1476-4687. PMID 30209394. S2CID 52197496.
  148. ^ Lanese, Nicoletta. "Kids' Fossilized Handprints May Be Some of the World's Oldest Art". Scientific American. Retrieved 17 October 2021.
  149. ^ Davis-Marks, Isis; Davis-Marks, Isis. "These 200,000-Year-Old Hand and Footprints Could Be the World's Earliest Cave Art". Smithsonian Magazine. Retrieved 17 October 2021.
  150. ^ Zhang, David D.; Bennett, Matthew R.; Cheng, Hai; Wang, Leibin; Zhang, Haiwei; Reynolds, Sally C.; Zhang, Shengda; Wang, Xiaoqing; Li, Teng; Urban, Tommy; Pei, Qing; Wu, Zhifeng; Zhang, Pu; Liu, Chunru; Wang, Yafeng; Wang, Cong; Zhang, Dongju; Lawrence Edwards, R. (10 September 2021). "Earliest parietal art: Hominin hand and foot traces from the middle Pleistocene of Tibet". Science Bulletin. 66 (24): 2506–2515. Bibcode:2021SciBu..66.2506Z. doi:10.1016/j.scib.2021.09.001. ISSN 2095-9273. PMID 36654210. S2CID 239102132.
  151. ^ Senut, Brigitte (2007). "6 the Earliest Putative Hominids". Handbook of Paleoanthropology. Springer. pp. 1519–1538. doi:10.1007/978-3-540-33761-4_49. ISBN 978-3-540-32474-4.
  152. ^ "One hell of an impression". CBC News. Retrieved 15 November 2021.
  153. ^ "Oldest footprints of pre-humans identified in Crete". University of Tübingen. Retrieved 15 November 2021.
  154. ^ Magazine, Smithsonian; Kindy, David. "New Research Suggests Human-Like Footprints in Crete Date to 6.05 Million Years Ago". Smithsonian Magazine. Retrieved 15 November 2021.
  155. ^ Kirscher, Uwe; El Atfy, Haytham; Gärtner, Andreas; Dallanave, Edoardo; Munz, Philipp; Niedźwiedzki, Grzegorz; Athanassiou, Athanassios; Fassoulas, Charalampos; Linnemann, Ulf; Hofmann, Mandy; Bennett, Matthew; Ahlberg, Per Erik; Böhme, Madelaine (11 October 2021). "Age constraints for the Trachilos footprints from Crete". Scientific Reports. 11 (1): 19427. Bibcode:2021NatSR..1119427K. doi:10.1038/s41598-021-98618-0. ISSN 2045-2322. PMC 8505496. PMID 34635686.
  156. ^ Williams, Scott A.; Prang, Thomas C.; Meyer, Marc R.; Russo, Gabrielle A.; Shapiro, Liza J. (2020-09-30). "Reevaluating bipedalism in Danuvius". Nature. 586 (7827): E1–E3. Bibcode:2020Natur.586E...1W. doi:10.1038/s41586-020-2736-4. ISSN 1476-4687. S2CID 222146537.
  157. ^ Bonilla Salomón, I.; Luján, À. H.; Ivanov, M.; Sabol, M. (2022). "Aliveria mojmiri sp. nov. among other flying and ground squirrels (Rodentia, Mammalia) from the early Miocene of Mokrá-Quarry sites (Moravia, Czech Republic)". Historical Biology: An International Journal of Paleobiology. 34 (10): 1950–1963. Bibcode:2022HBio...34.1950B. doi:10.1080/08912963.2021.1992403. S2CID 240485210.
  158. ^ Candela, A. M.; Pérez, M. E.; Rasia, L. L.; Cerdeño, E. (2021). "New late Oligocene caviomorph rodents from Mendoza Province, central-western Argentina". Journal of Vertebrate Paleontology. 41 (2): e1929264. Bibcode:2021JVPal..41E9264C. doi:10.1080/02724634.2021.1929264. S2CID 237518023.
  159. ^ a b Vianey-Liaud, M.; Marivaux, L. (2021). "The beginning of the adaptive radiation of Theridomorpha (Rodentia) in Western Europe: morphological and phylogenetic analyses of early and middle Eocene taxa; implications for systematics" (PDF). Palæovertebrata. 44 (2): e2. doi:10.18563/pv.44.2.e2. S2CID 240578879.
  160. ^ a b Boivin, M.; Marivaux, L.; Aguirre-Diaz, W.; Andriolli Custódio, M.; Benites-Palomino, A.; Pujos, F.; Roddaz, M.; Salas-Gismondi, R.; Stutz, N.; Tejada-Lara, J. V.; Yans, J.; Antoine, P.-O. (2021). "Eocene caviomorph rodents from Balsayacu (Peruvian Amazonia)" (PDF). PalZ. 96: 135–160. doi:10.1007/s12542-021-00551-0. S2CID 235326588.
  161. ^ a b c Ochoa, J.; Mijares, A. S. B.; Piper, P. J.; Reyes, M. C.; Heaney, L. R. (2021). "Three new extinct species from the endemic Philippine cloud rat radiation (Rodentia, Muridae, Phloeomyini)". Journal of Mammalogy. 102 (3): 909–930. doi:10.1093/jmammal/gyab023.
  162. ^ Lu, X.-Y.; Ni, X.; Maridet, O. (2021). "A new glirid-like cricetid from the lower Oligocene of southern China". Journal of Vertebrate Paleontology. 41 (1): e1917587. Bibcode:2021JVPal..41E7587L. doi:10.1080/02724634.2021.1917587. S2CID 236302122.
  163. ^ Marivaux, L.; Vélez-Juarbe, J.; Viñola López, L. W.; Fabre, P.-H.; Pujos, F.; Santos-Mercado, H.; Cruz, E. J.; Grajales Pérez, A. M.; Padilla, J.; Vélez-Rosado, K. I.; Cornée, J.-J.; Philippon, M.; Münch, P.; Antoine, P.-O. (2021). "An unpredicted ancient colonization of the West Indies by North American rodents: dental evidence of a geomorph from the early Oligocene of Puerto Rico" (PDF). Papers in Palaeontology. 7 (4): 2021–2039. Bibcode:2021PPal....7.2021M. doi:10.1002/spp2.1388. hdl:2027.42/170885. S2CID 237235904.
  164. ^ De Santi, N. A.; Verzi, D. H.; Olivares, A. I.; Piñero, P.; Álvarez, A.; Morgan, C. C. (2021). "A new Pleistocene Ctenomys and divergence dating of the hyperdiverse South American rodent family Ctenomyidae". Journal of Systematic Palaeontology. 19 (5): 377–392. Bibcode:2021JSPal..19..377S. doi:10.1080/14772019.2021.1910583. S2CID 235363109.
  165. ^ a b c van de Weerd, A. A.; de Bruijn, H.; Wessels, W. (2021). "New rodents from the late Oligocene site of Gözükızıllı in Anatolia (Turkey)". Historical Biology: An International Journal of Paleobiology. 33 (10): 2406–2431. Bibcode:2021HBio...33.2406V. doi:10.1080/08912963.2020.1800682.
  166. ^ Lazagabaster, I. A.; Rovelli, R.; Fabre, P.-H.; Porat, R.; Ullman, M.; Davidovich, U.; Lavi, T.; Ganor, A.; Klein, E.; Weiss, K.; Nuriel, P.; Meiri, M.; Marom, N. (2021). "Rare crested rat subfossils unveil Afro–Eurasian ecological corridors synchronous with early human dispersals". Proceedings of the National Academy of Sciences of the United States of America. 118 (31): e2105719118. Bibcode:2021PNAS..11805719L. doi:10.1073/pnas.2105719118. PMC 8346873. PMID 34312232. S2CID 236453662.
  167. ^ Mistretta, B. A.; Giovas, C. M.; Weksler, M.; Turvey, S. T. (2021). "Extinct insular oryzomyine rice rats (Rodentia: Sigmodontinae) from the Grenada Bank, southern Caribbean". Zootaxa. 4951 (3): 434–460. doi:10.11646/zootaxa.4951.3.2. PMID 33903389. S2CID 233410451.
  168. ^ Piñero, P.; Verzi, D. H.; Olivares, A. I.; Montalvo, C. I.; Tomassini, R. L.; Fernández Villoldo, A. (2021). "Evolutionary pattern of Metacaremys gen. nov. (Rodentia, Octodontidae) and its biochronological implications for the late Miocene and early Pliocene of southern South America". Papers in Palaeontology. 7 (4): 1895–1917. Bibcode:2021PPal....7.1895P. doi:10.1002/spp2.1368. S2CID 236309712.
  169. ^ a b c d Boivin, M.; Marivaux, L.; Aguirre-Diaz, W.; Benites-Palomino, A.; Billet, G.; Pujos, F.; Salas-Gismondi, R.; Stutz, N. S.; Tejada-Lara, J. V.; Varas-Malca, R. M.; Walton, A. H.; Antoine, P.-O. (2021). "Late middle Miocene caviomorph rodents from Tarapoto, Peruvian Amazonia". PLOS ONE. 16 (11): e0258455. Bibcode:2021PLoSO..1658455B. doi:10.1371/journal.pone.0258455. PMC 8565788. PMID 34731166.
  170. ^ Croft, D. A.; Flynn, J. J.; Wyss, A. R.; Charrier, R.; Anaya, F. (2021). "New Chinchillid Rodents (Hystricognathi: Caviomorpha) from Northern Chile and Bolivia Fill a 17-Million-Year Gap in the Pan-Chinchilline Fossil Record". Journal of Mammalian Evolution. 28 (4): 1205–1236. doi:10.1007/s10914-021-09579-0. S2CID 245207976.
  171. ^ Bilgin, M.; Joniak, P.; Mayda, S.; Göktaş, F.; Peláez-Campomanes, P.; van den Hoek Ostende, L. W. (2021). "Micromammals from the late early Miocene of Çapak (western Anatolia) herald a time of change". Journal of Paleontology. 95 (5): 1079–1096. Bibcode:2021JPal...95.1079B. doi:10.1017/jpa.2021.27. hdl:10261/249108. S2CID 234848590.
  172. ^ Ercoli, M. D.; Álvarez, A.; Verzi, D. H.; Villalba Ulberich, J. P.; Quiñones, S. I.; Constantini, O. E.; Zurita, A. E. (2021). "A new mammalian assemblage for Guanaco Formation (northwestern Argentina), and the description of a new genus of New World porcupine". Journal of South American Earth Sciences. 110: Article 103389. Bibcode:2021JSAES.11003389E. doi:10.1016/j.jsames.2021.103389.
  173. ^ van de Weerd, A. A.; de Bruijn, H.; Wessels, W.; Marković, Z. (2021). "New late Oligocene rodent faunas from the Pannonian basin". Palaeobiodiversity and Palaeoenvironments. 102 (2): 465–492. doi:10.1007/s12549-021-00487-y.
  174. ^ Piñero, P.; Olivares, A. I.; Verzi, D. H.; Contreras, V. H. (2021). "Paralonchothrix gen. nov., the first record of Echimyini (Rodentia, Octodontoidea) in the late Miocene of Southern South America". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 112 (2): 147–158. Bibcode:2021EESTR.112..147P. doi:10.1017/S175569102100027X. S2CID 237576539.
  175. ^ Al-Ashqar, S. F.; Seiffert, E. R.; de Vries, D.; El-Sayed, S.; Antar, M. S.; Sallam, H. M. (2021). "New phiocricetomyine rodents (Hystricognathi) from the Jebel Qatrani Formation, Fayum Depression, Egypt". PeerJ. 9: e12074. doi:10.7717/peerj.12074. PMC 8533026. PMID 34721955.
  176. ^ Gong, H.; Li, Q.; Ni, X. (2021). "New species of Yuomys (Rodentia, Ctenodactyloidea) from the upper Eocene of eastern Ningxia, China". Journal of Vertebrate Paleontology. 41 (3): e1938099. Bibcode:2021JVPal..41E8099G. doi:10.1080/02724634.2021.1938099. S2CID 238841435.
  177. ^ Fostowicz-Frelik, Ł.; López-Torres, S.; Li, Q. (2021). "Tarsal morphology of ischyromyid rodents from the middle Eocene of China gives an insight into the group's diversity in Central Asia". Scientific Reports. 11 (1): Article number 11543. Bibcode:2021NatSR..1111543F. doi:10.1038/s41598-021-90796-1. PMC 8172891. PMID 34078948.
  178. ^ Lu, X.; Costeur, L.; Hugueney, M.; Maridet, O. (2021). "New data on early Oligocene dormice (Rodentia, Gliridae) from southern Europe: phylogeny and diversification of the family". Journal of Systematic Palaeontology. 19 (3): 169–189. Bibcode:2021JSPal..19..169L. doi:10.1080/14772019.2021.1888814. S2CID 233402319.
  179. ^ Bertrand, O. C.; Püschel, H. P.; Schwab, J. A.; Silcox, M. T.; Brusatte, S. L. (2021). "The impact of locomotion on the brain evolution of squirrels and close relatives". Communications Biology. 4 (1): Article number 460. doi:10.1038/s42003-021-01887-8. PMC 8042109. PMID 33846528.
  180. ^ Sinitsa, M. V.; Čermák, S.; Kryuchkova, L. Yu. (2021). "Cranial Anatomy of Csakvaromys bredai (Rodentia, Sciuridae, Xerinae) and Implications for Ground Squirrel Evolution and Systematics". Journal of Mammalian Evolution. 29: 149–189. doi:10.1007/s10914-021-09561-w. S2CID 240547730.
  181. ^ Madozzo-Jaén, M. C.; Pérez, M. E.; Deschamps, C. M. (2021). "The oldest species of Dolichotis (Rodentia, Hystricognathi) from the Pliocene of Argentina: redescription and taxonomic status of "Orthomyctera" chapalmalense". Journal of Mammalian Evolution. 28 (3): 995–1013. doi:10.1007/s10914-021-09559-4. S2CID 238708251.
  182. ^ Kerber, L.; Candela, A. M.; Ferreira, J. D.; Pretto, F. A.; Bubadué, J.; Negri, F. R. (2021). "Postcranial Morphology of the Extinct Rodent Neoepiblema (Rodentia: Chinchilloidea): Insights Into the Paleobiology of Neoepiblemids". Journal of Mammalian Evolution. 29: 207–235. doi:10.1007/s10914-021-09567-4. S2CID 239145691.
  183. ^ Yang, Y.; Qiang, L.; Xijun, N.; Cheng, X.; Zhang, J.; Li, H.; Jin, C. (2021). "Tooth micro-wear analysis reveals that persistence of beaver Trogontherium cuvieri (Rodentia, Mammalia) in Northeast China relied on its plastic ecological niche in Pleistocene". Quaternary International. 591: 70–79. Bibcode:2021QuInt.591...70Y. doi:10.1016/j.quaint.2021.01.004. S2CID 234255041.
  184. ^ Prieto, J.; Rummel, M.; Scholz, H.; Mein, P. (2021). "A new middle Miocene lineage based on taxonomic revision of the large and rare cricetid-rodent genus Lartetomys". Palaeobiodiversity and Palaeoenvironments. 102: 223–236. doi:10.1007/s12549-021-00485-0.
  185. ^ Barbière, F.; Taglioretti, M.; Pardiñas, U. F. J.; Ortiz, P. E. (2021). "New craniodental material of the extinct sigmodontine Olympicomys (Rodentia, Cricetidae) allows a discussion of its tribal affiliation". Historical Biology: An International Journal of Paleobiology. 34: 72–84. doi:10.1080/08912963.2021.1896501. S2CID 233636862.
  186. ^ Kimura, Y.; Flynn, L. J.; Jacobs, L. L. (2021). "Tempo and Mode: Evidence on a Protracted Split From a Dense Fossil Record". Frontiers in Ecology and Evolution. 9: Article 642814. doi:10.3389/fevo.2021.642814.
  187. ^ Renom, P.; de-Dios, T.; Civit, S.; Llovera, L.; Sánchez-Gracia, A.; Lizano, E.; Rando, J. C.; Marquès-Bonet, T.; Kergoat, G. J.; Casanovas-Vilar, I.; Lalueza-Fox, C. (2021). "Genetic data from the extinct giant rat from Tenerife (Canary Islands) points to a recent divergence from mainland relatives". Biology Letters. 17 (12): Article ID 20210533. doi:10.1098/rsbl.2021.0533. PMC 8692034. PMID 34932923. S2CID 245355080.
  188. ^ Kawatani, A.; Kohno, N. (2021). "The oldest fossil record of the extant genus Berardius (Odontoceti, Ziphiidae) from the Middle to Late Miocene boundary of the western North Pacific". Royal Society Open Science. 8 (3): Article ID 201152. Bibcode:2021RSOS....801152K. doi:10.1098/rsos.201152. PMC 8074928. PMID 33959310.
  189. ^ Godfrey, S. J.; Gutstein, C. S.; Morgan, D. J. (2021). "A new odontocete (Inioidea, Odontoceti) from the late Neogene of North Carolina, USA". Fossil Record. 24 (2): 275–285. Bibcode:2021FossR..24..275G. doi:10.5194/fr-24-275-2021.
  190. ^ Solis-Añorve, A.; González-Barba, G.; Hernández-Rivera, R.; Schwennicke, T. (2021). "Late Miocene balaenopterid (Cetacea:Mysticeti) from Baja California Sur, Mexico". Journal of South American Earth Sciences. 111: Article 103498. Bibcode:2021JSAES.11103498S. doi:10.1016/j.jsames.2021.103498.
  191. ^ Guo, Z.; Kohno, N. (2021). "A new kentriodontid (Cetacea: Odontoceti) from the early to middle Miocene of the western North Pacific and a revision of kentriodontid phylogeny". PeerJ. 9: e10945. doi:10.7717/peerj.10945. PMC 7912617. PMID 33665037.
  192. ^ Benites-Palomino, A.; Vélez-Juarbe, J.; Collareta, A.; Ochoa, D.; Altamirano, A.; Carré, M.; Laime, M. J.; Urbina, M.; Salas-Gismondi, R. (2021). "Nasal compartmentalization in Kogiidae (Cetacea, Physeteroidea): insights from a new late Miocene dwarf sperm whale from the Pisco Formation" (PDF). Papers in Palaeontology. 7 (3): 1507–1524. Bibcode:2021PPal....7.1507B. doi:10.1002/spp2.1351. hdl:11568/1117119. S2CID 234058681.
  193. ^ Gohar, A. S.; Antar, M. S.; Boessenecker, R. W.; Sabry, D. A.; El-Sayed, S.; Seiffert, E. R.; Zalmout, I. S.; Sallam, H. M. (2021). "A new protocetid whale offers clues to biogeography and feeding ecology in early cetacean evolution". Proceedings of the Royal Society B: Biological Sciences. 288 (1957): Article ID 20211368. doi:10.1098/rspb.2021.1368. PMC 8385364. PMID 34428967. S2CID 237283049.
  194. ^ Belluzzo, A.; Lambert, O. (2021). "A new delphinid from the lower Pliocene of the North Sea and the early radiations of true dolphins". Fossil Record. 24 (1): 77–92. Bibcode:2021FossR..24...77B. doi:10.5194/fr-24-77-2021.
  195. ^ Lloyd, G. T.; Slater, G. J. (2021). "A total-group phylogenetic metatree for Cetacea and the importance of fossil data in diversification analyses". Systematic Biology. 70 (5): 922–939. doi:10.1093/sysbio/syab002. PMID 33507304.
  196. ^ Waugh, D. A.; Thewissen, J. G. M. (2021). "The pattern of brain-size change in the early evolution of cetaceans". PLOS ONE. 16 (9): e0257803. Bibcode:2021PLoSO..1657803W. doi:10.1371/journal.pone.0257803. PMC 8478358. PMID 34582492.
  197. ^ Kassegne, K. E.; Mourlam, M. J.; Guinot, G.; Amoudji, Y. Z.; Martin, J. E.; Togbe, K. A.; Johnson, A. K.; Hautier, L. (2021). "First partial cranium of Togocetus from Kpogamé (Togo) and the protocetid diversity in the Togolese phosphate basin" (PDF). Annales de Paléontologie. 107 (2): Article 102488. Bibcode:2021AnPal.10702488K. doi:10.1016/j.annpal.2021.102488. S2CID 236757400.
  198. ^ Uhen, M. D.; Peredo, C. M. (2021). "The first possible remingtonocetid stem whale from North America". Acta Palaeontologica Polonica. 66 (1): 77–83. doi:10.4202/app.00799.2020. S2CID 234133438.
  199. ^ Davydenko, S.; Shevchenko, T.; Ryabokon, I.; Tretiakov, R.; Gol'din, P. (2021). "A giant Eocene whale from Ukraine uncovers early cetacean adaptations to the fully aquatic life". Evolutionary Biology. 48 (1): 67–80. Bibcode:2021EvBio..48...67D. doi:10.1007/s11692-020-09524-8. S2CID 230110031.
  200. ^ Smith, K. M.; Hastings, A. K.; Bebej, R. M.; Uhen, M. D. (2021). "Biogeographic, stratigraphic, and environmental distribution of Basilosaurus (Mammalia, Cetacea) in North America with a review of the late Eocene shoreline in the southeastern coastal plain". Journal of Paleontology. 96 (2): 439–451. doi:10.1017/jpa.2021.90. S2CID 240244165.
  201. ^ Ekdale, E. G.; Deméré, T. A. (2022). "Neurovascular evidence for a co-occurrence of teeth and baleen in an Oligocene mysticete and the transition to filter-feeding in baleen whales". Zoological Journal of the Linnean Society. 194 (2): 395–415. doi:10.1093/zoolinnean/zlab017.
  202. ^ Lambert, O.; de Muizon, C.; Varas-Malca, R. M.; Urbina, M.; Bianucci, G. (2021). "Eurhinodelphinids from the early Miocene of Peru: first unambiguous records of these hyper-longirostrine dolphins outside the North Atlantic realm". Rivista Italiana di Paleontologia e Stratigrafia. 127 (1): 17–32. doi:10.13130/2039-4942/15124.
  203. ^ Lambert, O.; Goolaerts, S. (2021). "Late Miocene Survival of a Hyper-Longirostrine Dolphin and the Neogene to Recent Evolution of Rostrum Proportions Among Odontocetes". Journal of Mammalian Evolution. 29: 99–111. doi:10.1007/s10914-021-09573-6. S2CID 240016777.
  204. ^ Benites-Palomino, A.; Reyes-Cespedes, A. E.; Aguirre-Fernández, G.; Sánchez, R.; Carrillo-Briceño, J. D.; Sánchez-Villagra, M. R. (2021). "A stem delphinidan from the Caribbean region of Venezuela". Swiss Journal of Palaeontology. 140 (1): Article 6. Bibcode:2021SwJP..140....6B. doi:10.1186/s13358-021-00217-z. PMC 7929948. PMID 33746896.
  205. ^ Viglino, M.; Gaetán, M.; Buono, M. R.; Fordyce, R. E.; Park, T. (2021). "Hearing from the ocean and into the river: the evolution of the inner ear of Platanistoidea (Cetacea: Odontoceti)". Paleobiology. 47 (4): 591–611. Bibcode:2021Pbio...47..591V. doi:10.1017/pab.2021.11. S2CID 233517623.
  206. ^ Paolucci, F.; Buono, M. R.; Fernández, M. S.; Cuitiño, J. (2021). "Systematic revision of a Miocene sperm whale from Patagonia, Argentina, and the phylogenetic signal of tympano-periotic bones in Physeteroidea". Acta Palaeontologica Polonica. 66 (1): 63–76. doi:10.4202/app.00763.2020.
  207. ^ Peri, E.; Falkingham, P. L.; Collareta, A.; Bianucci, G. (2022). "Biting in the Miocene seas: estimation of the bite force of the macroraptorial sperm whale Zygophyseter varolai using finite element analysis". Historical Biology: An International Journal of Paleobiology. 34 (10): 1916–1927. Bibcode:2022HBio...34.1916P. doi:10.1080/08912963.2021.1986814. hdl:11568/1117056. S2CID 239510338.
  208. ^ Alfsen, A.; Bosselaers, M.; Lambert, O. (2021). "New sperm whale remains from the late Miocene of the North Sea and a revised family attribution for the small crown physeteroid Thalassocetus Abel, 1905". Comptes Rendus Palevol. 20 (39): 807–822. doi:10.5852/cr-palevol2021v20a39.
  209. ^ Mccurry, M. R.; Marx, F. G.; Evans, A. R.; Park, T.; Pyenson, N. D.; Kohno, N.; Castiglione, S.; Fitzgerald, E. M. G. (2021). "Brain size evolution in whales and dolphins: new data from fossil mysticetes". Biological Journal of the Linnean Society. 133 (4): 990–998. doi:10.1093/biolinnean/blab054.
  210. ^ Bisconti, M.; Pellegrino, L.; Carnevale, G. (2021). "Evolution of gigantism in right and bowhead whales (Cetacea: Mysticeti: Balaenidae)". Biological Journal of the Linnean Society. 134 (2): 498–524. doi:10.1093/biolinnean/blab086.
  211. ^ Collareta, A.; Marx, F. G.; Casati, S.; Di Cencio, A.; Merella, M.; Bianucci, G. (2021). "A cetotheriid whale from the upper Miocene of the Mediterranean". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 301 (1): 9–16. doi:10.1127/njgpa/2021/0994. hdl:11568/1117113. S2CID 237736273.
  212. ^ Bisconti, M.; Daniello, R.; Damarco, P.; Tartarelli, G.; Pavia, M.; Carnevale, G. (2021). "High Encephalization in a Fossil Rorqual Illuminates Baleen Whale Brain Evolution". Brain, Behavior and Evolution. 96 (2): 78–90. doi:10.1159/000519852. PMID 34758463. S2CID 243987538.
  213. ^ Taylor, L.; Abella, J.; Morales-Saldaña, J. M. (2021). "New fossil remains of the commensal barnacle Cryptolepas rhachianecti provide evidence of gray whales in the prehistoric South Pacific". Journal of Paleontology. 96 (3): 583–590. doi:10.1017/jpa.2021.113. S2CID 245230524.
  214. ^ Bisconti, M.; Bosselaers, M. (2021). "On Plesiocetus van Beneden, 1859 (Mammalia, Cetacea, Mysticeti)". Rivista Italiana di Paleontologia e Stratigrafia. 127 (2): 231–274. doi:10.13130/2039-4942/15745.
  215. ^ Li, Y.-K.; Mennecart, B.; Aiglstorfer, M.; Ni, X.-J.; Li, Q.; Deng, T. (2021). "The early evolution of cranial appendages in Bovoidea revealed by new species of Amphimoschus (Mammalia: Ruminantia) from China". Zoological Journal of the Linnean Society. 196 (3): 1039–1053. doi:10.1093/zoolinnean/zlab053.
  216. ^ Sánchez, I. M.; Cantalapiedra, J. L.; DeMiguel, D.; Azanza, B.; Strani, F.; Morales, J. (2024). "The postcranial skeleton of Amphimoschus Bourgeois, 1873 (Cetartiodactyla, Ruminantia, Pecora) sheds light on its phylogeny and the evolution of the clade Cervoidea". Journal of Systematic Palaeontology. 22 (1). 2386020. doi:10.1080/14772019.2024.2386020.
  217. ^ a b Mennecart, B.; Aiglstorfer, M.; Li, Y.; Li, C.; Wang, S.Q. (2021). "Ruminants reveal Eocene Asiatic palaeobiogeographical provinces as the origin of diachronous mammalian Oligocene dispersals into Europe". Scientific Reports. 11 (1): Article number 17710. Bibcode:2021NatSR..1117710M. doi:10.1038/s41598-021-96221-x. PMC 8421421. PMID 34489502.
  218. ^ a b c Prothero, D. R. (2021). "The systematics of North American peccaries (Mammalia: Artiodactyla: Tayassuidae)". New Mexico Museum of Natural History and Science Bulletin. 85: 1–76.
  219. ^ Li, Qian; Li, Qi (2022). "A new middle Eocene bunodont artiodactyl from the Erlian Basin (Nei Mongol, China)". Historical Biology: An International Journal of Paleobiology. 34 (10): 1941–1949. Bibcode:2022HBio...34.1941L. doi:10.1080/08912963.2021.1989679. S2CID 239828310.
  220. ^ Pickford, M. (2021). "Europe's last anthracothere (Artiodactyla, Mammalia) from Ribolla (MN 12) Italy" (PDF). Historical Biology: An International Journal of Paleobiology. 34: 85–93. doi:10.1080/08912963.2021.1900169. S2CID 233686772.
  221. ^ Kostopoulos, D. S.; Sevim Erol, A.; Yavuz, A. Y.; Mayda, S. (2021). "A new late Miocene bovid (Mammalia: Artiodactyla: Bovidae) from Çorakyerler (Turkey)". Fossil Record. 24 (1): 9–18. Bibcode:2021FossR..24....9K. doi:10.5194/fr-24-9-2021.
  222. ^ a b Ducrocq, S.; Chaimanee, Y.; Jaeger, J.-J.; Yamee, C.; Rugbumrung, M.; Grohé, C.; Chavasseau, O. (2021). "New fossil remains from Bang Mark locality, Krabi Basin, southern Thailand". Journal of Vertebrate Paleontology. 41 (4): e1988624. Bibcode:2021JVPal..41E8624D. doi:10.1080/02724634.2021.1988624. S2CID 244781496.
  223. ^ Prothero, D. R. (2021). "Mckennahyus parisidutrai, a new late Miocene peccary with bizarre flaring cheekbones". New Mexico Museum of Natural History and Science Bulletin. 82: 305–311.
  224. ^ Croitor, R.; Abbas, S. G.; Babar, M. A.; Khan, M. A. (2021). "A new deer species (Cervidae, Mammalia) from the upper Siwaliks (Pakistan)". Quaternary International. 595: 1–11. Bibcode:2021QuInt.595....1C. doi:10.1016/j.quaint.2021.03.009.
  225. ^ Rana, R. S.; Waqas, M.; Orliac, M.; Folie, A.; Smith, T. (2021). "A new basal raoellid artiodactyl (Mammalia) from the middle Eocene Subathu Group of Rajouri District, Jammu and Kashmir, northwest Himalaya, India" (PDF). Geobios. 66–67: 193–206. Bibcode:2021Geobi..66..193R. doi:10.1016/j.geobios.2020.12.003. S2CID 233516820.
  226. ^ Prothero, D. R. (2021). "Webbochoerus macfaddeni, a new fossil peccary from the late Miocene of Florida". New Mexico Museum of Natural History and Science Bulletin. 82: 313–320.
  227. ^ Weppe, R.; Orliac, M. J.; Guinot, G.; Condamine, F. L. (2021). "Evolutionary drivers, morphological evolution and diversity dynamics of a surviving mammal clade: cainotherioids at the Eocene–Oligocene transition". Proceedings of the Royal Society B: Biological Sciences. 288 (1952): Article ID 20210173. arXiv:2110.05232. doi:10.1098/rspb.2021.0173. PMC 8170207. PMID 34074121.
  228. ^ Robson, S. V.; Seale, B.; Theodor, J. M. (2021). "The petrosal and basicranial morphology of Protoceras celer". PLOS ONE. 16 (7): e0251832. Bibcode:2021PLoSO..1651832R. doi:10.1371/journal.pone.0251832. PMC 8321106. PMID 34324518.
  229. ^ Caballero, Ó.; Montoya, P.; Crespo, V. D.; Morales, J.; Abella, J. (2021). "The autopodial skeleton of Paracamelus aguirrei (Morales 1984) (Tylopoda, Mammalia) from the late Miocene site of Venta del Moro (Valencia, Spain)". Journal of Iberian Geology. 47 (3): 483–500. Bibcode:2021JIbG...47..483C. doi:10.1007/s41513-020-00144-x. S2CID 231580255.
  230. ^ Gasparini, G. M.; Moreno-Mancilla, O. F.; Cómbita, J. L. (2021). "Selenogonus narinoensis Stirton, 1947 (Tayassuidae, Cetartiodactyla, Mammalia): taxonomic status and paleobiogeographic implications". Fossil Record. 24 (1): 65–75. Bibcode:2021FossR..24...65G. doi:10.5194/fr-24-65-2021. hdl:11336/164845.
  231. ^ Cucchi, T.; Domont, A.; Harbers, H.; Evin, A.; Alcàntara Fors, R.; Saña, M.; Leduc, C.; Guidez, A.; Bridault, A.; Hongo, H.; Price, M.; Peters, J.; Briois, F.; Guilaine, J.; Vigne, J.-D. (2021). "Bones geometric morphometrics illustrate 10th millennium cal. BP domestication of autochthonous Cypriot wild boar (Sus scrofa circeus nov. ssp)". Scientific Reports. 11 (1). 22862. Bibcode:2021NatSR..1111435C. doi:10.1038/s41598-021-90933-w. PMC 8169896. PMID 34075126.
  232. ^ Januario, M.; Quental, T. B. (2021). "Re-evaluation of the "law of constant extinction" for ruminants at different taxonomical scales". Evolution. 75 (3): 656–671. doi:10.1111/evo.14177. PMID 33486771. S2CID 231702201.
  233. ^ Hall, A. S.; Cote, S. (2021). "Ruminant mesowear reveals consistently browse-dominated diets throughout the early and middle Miocene of eastern Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 567: Article 110253. Bibcode:2021PPP...56710253H. doi:10.1016/j.palaeo.2021.110253. S2CID 233517877.
  234. ^ Mennecart, B.; Wazir, W. A.; Sehgal, R. K.; Patnaik, R.; Singh, N. P.; Kumar, N.; Nanda, A. C. (2022). "New remains of Nalamaeryx (Tragulidae, Mammalia) from the Ladakh Himalaya and their phylogenetical and palaeoenvironmental implications". Historical Biology: An International Journal of Paleobiology. 34 (12): 2295–2303. Bibcode:2022HBio...34.2295M. doi:10.1080/08912963.2021.2014479. S2CID 245480633.
  235. ^ Mennecart, B.; Métais, G.; Costeur, L.; Ginsburg, L.; Rössner, G. E. (2021). "Reassessment of the enigmatic ruminant Miocene genus Amphimoschus Bourgeois, 1873 (Mammalia, Artiodactyla, Pecora)". PLOS ONE. 16 (1): e0244661. Bibcode:2021PLoSO..1644661M. doi:10.1371/journal.pone.0244661. PMC 7846017. PMID 33513144.
  236. ^ Prothero, D. R.; Syverson, V. J. P.; Hulbert, R.; de Anda, E. E.; Balassa, D. (2021). "Allometric trends in growth and dwarfing in the dwarf pronghorn Capromeryx: does dwarfing follow the same trends as growth?". New Mexico Museum of Natural History and Science Bulletin. 82: 335–339.
  237. ^ Prothero, D. R.; de Anda, E. E.; Balassa, D. (2021). "The postcranial skeleton of Capromeryx minor, a dwarf pronghorn (Artiodactyla: Antilocapridae) from the late Pleistocene of Rancho La Brea". New Mexico Museum of Natural History and Science Bulletin. 82: 321–333.
  238. ^ Khan, M. A.; Babar, M. A.; Ríos, M. (2021). "New material of Bramatherium grande from the Siwaliks of Pakistan sheds light on dental intra-clade morphological variability of Late Miocene sivatheres". Journal of Vertebrate Paleontology. 41 (1): e1898976. Bibcode:2021JVPal..41E8976K. doi:10.1080/02724634.2021.1898976. S2CID 234831069.
  239. ^ Ríos, M.; Montoya, P.; Morales, J.; Romero, G. (2021). "First occurrence of Sivatherium Falconer and Cautley, 1836 (Mammalia, Ruminantia, Giraffidae) in the Iberian Peninsula". Journal of Vertebrate Paleontology. 41 (3): e1985507. Bibcode:2021JVPal..41E5507R. doi:10.1080/02724634.2021.1985507. hdl:10362/129532. S2CID 243958520.
  240. ^ Calamari, Z. T. (2021). "Total evidence phylogenetic analysis supports new morphological synapomorphies for Bovidae". American Museum Novitates (3970): 1–38. doi:10.1206/3970.1. hdl:2246/7267. S2CID 235441087.
  241. ^ Nishioka, Y.; Kohno, N.; Kudo, Y. (2021). "Taxonomic revision of the holotype of Proboselaphus watasei Matsumoto, 1915 (Bovidae, Artiodactyla) from Chuanyu area, China". Vertebrata PalAsiatica. 59 (3): 200–212. doi:10.19615/j.cnki.1000-3118.210322.
  242. ^ Croitor, R. (2021). "Early evolutionary radiation and diversity of the Old World telemetacarpal deer (Capreolinae, Cervidae, Mammalia)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 300 (1): 33–67. doi:10.1127/njgpa/2021/0978. S2CID 234849546.
  243. ^ Rotti, A.; Vezzosi, R. I.; Mothé, D.; Avilla, L. S. (2021). "Rising from the ashes: The biggest South American deers (Cetartiodactyla: Cervidae) once roamed Northeast Brazil". Journal of South American Earth Sciences. 108: Article 103154. Bibcode:2021JSAES.10803154R. doi:10.1016/j.jsames.2021.103154. S2CID 233546889.
  244. ^ Schilling, A.-M.; Rössner, G. E. (2021). "New skull material of Pleistocene dwarf deer from Crete (Greece)". Comptes Rendus Palevol. 20 (9): 141–164. doi:10.5852/cr-palevol2021v20a9. S2CID 233788288.
  245. ^ Palombo, M. R.; Zedda, M. (2021). "The intriguing giant deer from the Bate cave (Crete): could paleohistological evidence question its taxonomy and nomenclature?". Integrative Zoology. 17 (1): 54–77. doi:10.1111/1749-4877.12533. PMC 9292671. PMID 33728744. S2CID 232262602.
  246. ^ Rey-Iglesia, A.; Lister, A. M.; Campos, P. F.; Brace, S.; Mattiangeli, V.; Daly, K. G.; Teasdale, M. D.; Bradley, D. G.; Barnes, I.; Hansen, A. J. (2021). "Exploring the phylogeography and population dynamics of the giant deer (Megaloceros giganteus) using Late Quaternary mitogenomes". Proceedings of the Royal Society B: Biological Sciences. 288 (1950): Article ID 20201864. doi:10.1098/rspb.2020.1864. PMC 8114472. PMID 33977786.
  247. ^ Croitor, R. (2021). "Taxonomy, Systematics and Evolution of Giant Deer Megaloceros giganteus (Blumenbach, 1799) (Cervidae, Mammalia) from the Pleistocene of Eurasia". Quaternary. 4 (4): Article 36. doi:10.3390/quat4040036.
  248. ^ Pandolfi, L.; Masini, F.; Kostopoulos, D. S. (2021). "Messinian Italian Bovidae revised: paleobiogeographic and biochronological implications". Historical Biology: An International Journal of Paleobiology. 33 (12): 3590–3603. Bibcode:2021HBio...33.3590P. doi:10.1080/08912963.2021.1878513. S2CID 233669813.
  249. ^ Shi, Q.; Deng, T. (2021). "Redescription of the skull of Hezhengia bohlini (Artiodactyla, Mammalia) and a reassessment of the systematics of the Chinese late Miocene 'ovibovines'". Journal of Systematic Palaeontology. 18 (24): 2059–2074. doi:10.1080/14772019.2021.1883756. S2CID 232116327.
  250. ^ Shi, Q.; Hou, S.; Sun, B.; Wang, S.; Deng, T. (2021). "Ontogenetic and Intraspecific Variation in the Skull Morphology of the Late Miocene Bovid Hezhengia bohlini". Journal of Mammalian Evolution. 28 (3): 871–884. doi:10.1007/s10914-021-09558-5. S2CID 238816485.
  251. ^ Kovarovic, K.; Faith, J. T.; Jenkins, K. E.; Tryon, C. A.; Peppe, D. J (2021). "Ecomorphology and ecology of the grassland specialist, Rusingoryx atopocranion (Artiodactyla: Bovidae), from the late Pleistocene of western Kenya". Quaternary Research. 101: 187–204. Bibcode:2021QuRes.101..187K. doi:10.1017/qua.2020.102. S2CID 234185272.
  252. ^ Blondel, C.; Merceron, G.; Rowan, J.; Surault, J.; Boisserie, J.-R. (2021). "Dietary ecology of Reduncini (Bovidae) from the Shungura Formation, Lower Omo Valley, Ethiopia". Palaeogeography, Palaeoclimatology, Palaeoecology. 587: Article 110789. doi:10.1016/j.palaeo.2021.110789. S2CID 245158768.
  253. ^ Zver, L.; Toškan, B.; Bužan, E. (2021). "Phylogeny of Late Pleistocene and Holocene Bison species in Europe and North America". Quaternary International. 595: 30–38. Bibcode:2021QuInt.595...30Z. doi:10.1016/j.quaint.2021.04.022.
  254. ^ Sorbelli, L.; Alba, D. M.; Cherin, M.; Moullé, P.-É.; Brugal, J.-P.; Madurell-Malapeira, J. (2021). "A review on Bison schoetensacki and its closest relatives through the early-Middle Pleistocene transition: Insights from the Vallparadís Section (NE Iberian Peninsula) and other European localities". Quaternary Science Reviews. 261: Article 106933. Bibcode:2021QSRv..26106933S. doi:10.1016/j.quascirev.2021.106933. S2CID 235527116.
  255. ^ Houssaye, A.; Martin, F.; Boisserie, J.-R.; Lihoreau, F. (2021). "Paleoecological Inferences from Long Bone Microanatomical Specializations in Hippopotamoidea (Mammalia, Artiodactyla)" (PDF). Journal of Mammalian Evolution. 28 (3): 847–870. doi:10.1007/s10914-021-09536-x. S2CID 233670466.
  256. ^ Ducrocq, S.; Chaimanee, Y.; Naing Soe, A.; Sein, C.; Jaeger, J.-J.; Chavasseau, O. (2021). "First report of the lower dentition of Siamotherium pondaungensis (Cetartiodactyla, Hippopotamoidea) from the late middle Eocene Pondaung Formation, Myanmar" (PDF). Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 301 (2): 217–228. doi:10.1127/njgpa/2021/1010. S2CID 238734575.
  257. ^ Martino, R.; Pignatti, J.; Rook, L.; Pandolfi, L. (2021). "Hippopotamid dispersal across the Mediterranean in the latest Miocene: a re-evaluation of the Gravitelli record from Sicily, Italy". Acta Palaeontologica Polonica. 66 (Supplement to 3): S67–S78. doi:10.4202/app.00838.2020. hdl:2158/1245233. S2CID 237333551.
  258. ^ Adams, N. F.; Candy, I.; Schreve, D. C. (2021). "An Early Pleistocene hippopotamus from Westbury Cave, Somerset, England: support for a previously unrecognized temperate interval in the British Quaternary record". Journal of Quaternary Science. 37: 28–41. doi:10.1002/jqs.3375.
  259. ^ Georgitsis, M. K.; Liakopoulou, D. E.; Theodorou, G. E. (2021). "Morphofunctional examination of the carpal bones of pygmy hippopotamus from Ayia Napa, Cyprus". The Anatomical Record. 305 (2): 297–320. doi:10.1002/ar.24738. PMID 34369097. S2CID 236959026.
  260. ^ Psonis, N.; Vassou, D.; Nicolaou, L.; Roussiakis, S.; Iliopoulos, G.; Poulakakis, N.; Sfenthourakis, S. (2022). "Mitochondrial sequences of the extinct Cypriot pygmy hippopotamus confirm its phylogenetic placement". Zoological Journal of the Linnean Society. 196 (3): 979–989. doi:10.1093/zoolinnean/zlab089.
  261. ^ Orliac, M. J.; Thewissen, J. G. M. (2021). "The Endocranial Cast of Indohyus (Artiodactyla, Raoellidae): The Origin of the Cetacean Brain". Journal of Mammalian Evolution. 28 (3): 831–843. doi:10.1007/s10914-021-09552-x. S2CID 235522471.
  262. ^ Gasparini, G. M.; Parisi Dutra, R.; Perini, F. A.; Croft, D. A.; Cozzuol, M. A.; Missagia, R. V.; Lucas, S. G. (2021). "On the supposed presence of Miocene Tayassuidae and Dromomerycinae (Mammalia, Cetartiodactyla) in South America". American Museum Novitates (3968): 1–27. doi:10.1206/3968.1. hdl:2246/7259. S2CID 232341391.
  263. ^ Robson, S. V.; Ludtke, J. A.; Theodor, J. M. (2021). "The petrosal and basicranial morphology of Leptoreodon major (Protoceratidae, Artiodactyla)". Vertebrate Anatomy Morphology Palaeontology. 9 (1): 116–130. doi:10.18435/vamp29378.
  264. ^ Morales, J.; Abella, J.; Sanisidro, O.; Valenciano, A. (2021). "Ammitocyon kainos gen. et sp. nov., a chimerical amphicyonid (Mammalia, Carnivora) from the late Miocene carnivore traps of Cerro de los Batallones (Madrid, Spain)". Journal of Systematic Palaeontology. 19 (5): 393–415. Bibcode:2021JSPal..19..393M. doi:10.1080/14772019.2021.1910868. S2CID 235363054.
  265. ^ Martinez-Navarro, B.; Bartolini Lucenti, S.; Palmqvist, P.; Ros-Montoya, S.; Madurell-Malapeira, J.; Espigares, M. P. (2021). "A new species of dog from the Early Pleistocene site of Venta Micena (Orce, Baza Basin, Spain)". Comptes Rendus Palevol. 20 (17): 297–314. doi:10.5852/cr-palevol2021v20a17. S2CID 235562791.
  266. ^ Morlo, M.; Friscia, A.; Miller, E. R.; Locke, E.; Nengo, I. (2021). "Systematics and paleobiology of Carnivora and Hyaenodonta from the lower Miocene of Buluk, Kenya". Acta Palaeontologica Polonica. 66 (2): 465–484. doi:10.4202/app.00794.2020. S2CID 236655608.
  267. ^ a b Morales, J.; Fejfar, O.; Heizmann, E.; Wagner, J.; Valenciano, A.; Abella, J. (2021). "The Amphicyoninae (Amphicyonidae, Carnivora, Mammalia) of the early Miocene from Tuchořice, the Czech Republic". Fossil Imprint. 77 (1): 126–144. doi:10.37520/fi.2021.011. S2CID 245032640.
  268. ^ a b Morales, J.; Pickford, M. (2021). "Taxonomic revision of the genus Leptoplesictis (Viverridae, Mammalia) with description of new fossils from Grillental VI (Namibia) and Moratilla 2 (Spain)" (PDF). Communications of the Geological Survey of Namibia. 23: 161–176.
  269. ^ Alba, D. M.; Robles, J. M.; Valenciano, A.; Abella, J.; Casanovas-Vilar, I. (2021). "A new species of Eomellivora from the latest Aragonian of Abocador de Can Mata (NE Iberian Peninsula)". Historical Biology: An International Journal of Paleobiology. 34 (4): 694–703. doi:10.1080/08912963.2021.1943380. S2CID 238002927.
  270. ^ Valenciano, A.; Morales, J.; Govender, R. (2021). "Eucyon khoikhoi sp. nov. (Carnivora: Canidae) from Langebaanweg 'E' Quarry (early Pliocene, South Africa): the most complete African canini from the Mio-Pliocene". Zoological Journal of the Linnean Society. 194 (2): 366–394. doi:10.1093/zoolinnean/zlab022.
  271. ^ Barrett, Paul Zachary (2021-10-26). "The largest hoplophonine and a complex new hypothesis of nimravid evolution". Scientific Reports. 11 (1): 21078. Bibcode:2021NatSR..1121078B. doi:10.1038/s41598-021-00521-1. ISSN 2045-2322. PMC 8548586. PMID 34702935.
  272. ^ Galiano, H.; Tseng, Z. J.; Solounias, N.; Wang, X.-M.; Qiu, Z.-X.; White, S. C. (2021). "A new aardwolf-line fossil hyena from Middle and Late Miocene deposits of Linxia Basin, Gansu, China". Vertebrata PalAsiatica. 60 (2): 81–116. doi:10.19615/j.cnki.2096-9899.211025.
  273. ^ Orcutt, J. D.; Calede, J. J. M. (2021). "Quantitative analyses of feliform humeri reveal the existence of a very large cat in North America during the Miocene". Journal of Mammalian Evolution. 28 (3): 729–751. doi:10.1007/s10914-021-09540-1. S2CID 235541255.
  274. ^ Rahmat, S.; Hafed, A. B.; Godfrey, S. J.; Nance, J. R.; Koretsky, I. A. (2021). "A new unusual Monachinae from the Neogene of the Atlantic Coastal Plain (Maryland, USA)". Historical Biology: An International Journal of Paleobiology. 34 (3): 515–524. doi:10.1080/08912963.2021.1933469. S2CID 237752557.
  275. ^ Ferrusquía-Villafranca, I.; Wang, X. (2021). "The first Paleogene mustelid (Mammalia, Carnivora) from southern North America and its paleontologic significance". Journal of South American Earth Sciences. 109: Article 103236. Bibcode:2021JSAES.10903236F. doi:10.1016/j.jsames.2021.103236. S2CID 233830062.
  276. ^ Welsh, E. (2021). "A new species of an enigmatic carnivore Palaeogale (Feliformia: Palaeogalidae) from Badlands National Park, South Dakota" (PDF). Proceedings of the South Dakota Academy of Science. 100: 107–120.
  277. ^ Wallace, S. C.; Lyon, L. M. (2021). "Systematic revision of the Ailurinae (Mammalia: Carnivora: Ailuridae): with a new species from North America". In Angela R. Glatston (ed.). Red Panda. Biology and Conservation of the First Panda (second ed.). Academic Press. pp. 31–52. doi:10.1016/B978-0-12-823753-3.00011-9. ISBN 978-0-12-823753-3. S2CID 243818007.
  278. ^ Koretsky, I. A.; Rahmat, S. J. (2021). "Unique Short-Faced Miocene Seal Discovered in Grytsiv (Ukraine)". Zoodiversity. 55 (2): 143–154. doi:10.15407/zoo2021.02.143. S2CID 235518003.
  279. ^ Ruiz-Ramoni, D.; Wang, X.; Rincón, A. D. (2021). "Canids (Caninae) from the past of Venezuela". Ameghiniana. 59 (1): 97–116. doi:10.5710/AMGH.16.09.2021.3448. S2CID 240576546.
  280. ^ Wang, X.; Tseng, Z. J.; Jiangzuo, Q.; Wang, S.; Wang, H. (2022). "Sonitictis moralesi, gen. et sp. nov, a new hypercarnivorous and durophagous mustelid from middle Miocene Tunggur Formation, Inner Mongolia, China and its functional morphology". Historical Biology: An International Journal of Paleobiology. 34 (8): 1361–1372. Bibcode:2022HBio...34.1361W. doi:10.1080/08912963.2021.2004594. S2CID 250533797.
  281. ^ Kargopoulos, N.; Valenciano, A.; Kampouridis, P.; Lechner, T.; Böhme, M. (2021). "New early late Miocene species of Vishnuonyx (Carnivora, Lutrinae) from the hominid locality of Hammerschmiede, Bavaria, Germany". Journal of Vertebrate Paleontology. 41 (3): e1948858. Bibcode:2021JVPal..41E8858K. doi:10.1080/02724634.2021.1948858. S2CID 240538139.
  282. ^ Bartolini Lucenti, S. (2021). "A new large-sized Pliocene fox (Carnivora, Canidae) from Yushe Basin (Shanxi, China)". Rivista Italiana di Paleontologia e Stratigrafia. 127 (1): 133–147. doi:10.13130/2039-4942/15206. S2CID 244993909.
  283. ^ de Bonis, L.; Grohé, C.; Chaimanee, Y.; Jaeger, J.-J.; Yamee, C.; Rugbumrung, M. (2021). "New fossil Carnivora from Thailand: transcontinental paleobiostratigraphic correlations and paleobiogeographical implications". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (3): 319–332. doi:10.1127/njgpa/2021/0972. S2CID 233603122.
  284. ^ Bartolini-Lucenti, S.; Madurell-Malapeira, J. (2021). "Ancestral foxes at the gates of Europe: the Pliocene fox from Çalta-1 (Turkey) and their relationships with Asian and European Plio-Pleistocene foxes". Comptes Rendus Palevol. 20 (29): 619–626. doi:10.5852/cr-palevol2021v20a29. S2CID 237744814.
  285. ^ Perri, A. R.; Mitchell, K. J.; Mouton, A.; Álvarez-Carretero, S.; Hulme-Beaman, A.; Haile, J.; Jamieson, A.; Meachen, J.; Lin, A. T.; Schubert, B. W.; Ameen, C.; Antipina, E. E.; Bover, P.; Brace, S.; Carmagnini, A.; Carøe, C.; Samaniego Castruita, J. A.; Chatters, J. C.; Dobney, K.; dos Reis, M.; Evin, A.; Gaubert, P.; Gopalakrishnan, S.; Gower, G.; Heiniger, H.; Helgen, K. M.; Kapp, J.; Kosintsev, P. A.; Linderholm, A.; Ozga, A. T.; Presslee, S.; Salis, A. T.; Saremi, N. F.; Shew, C.; Skerry, K.; Taranenko, D. E.; Thompson, M.; Sablin, M. V.; Kuzmin, Y. V.; Collins, M. J.; Sinding, M.-H. S.; Gilbert, M. T. P.; Stone, A. C.; Shapiro, B.; Van Valkenburgh, B.; Wayne, R. K.; Larson, G.; Cooper, A.; Frantz, L. A. F. (2021). "Dire wolves were the last of an ancient New World canid lineage". Nature. 591 (7848): 87–91. Bibcode:2021Natur.591...87P. doi:10.1038/s41586-020-03082-x. PMID 33442059. S2CID 231604957.
  286. ^ Bartolini-Lucenti, S.; Madurell-Malapeira, J.; Martínez-Navarro, B.; Palmqvist, P.; Lordkipanidze, D.; Rook, L. (2021). "The early hunting dog from Dmanisi with comments on the social behaviour in Canidae and hominins". Scientific Reports. 11 (1): Article number 13501. Bibcode:2021NatSR..1113501B. doi:10.1038/s41598-021-92818-4. PMC 8322302. PMID 34326360.
  287. ^ Bartolini-Lucenti, S.; Spassov, N. (2021). "Cave canem! The earliest Canis (Xenocyon) (Canidae, Mammalia) of Europe: Taxonomic affinities and paleoecology of the fossil wild dogs". Quaternary Science Reviews. 276: Article 107315. doi:10.1016/j.quascirev.2021.107315. S2CID 245120609.
  288. ^ Ciucani, M. M.; Kragmose Jensen, J.; Sinding, M.-H. S.; Smith, O.; Bartolini Lucenti, S.; Rosengren, E.; Rook, L.; Tuveri, C.; Arca, M.; Cappellini, E.; Galaverni, M.; Randi, E.; Guo, C.; Zhang, G.; Sicheritz-Pontén, T.; Dalén, L.; Gilbert, M. P. T.; Gopalakrishnan, S. (2021). "Evolutionary history of the extinct Sardinian dhole". Current Biology. 31 (24): 5571–5579.e6. doi:10.1016/j.cub.2021.09.059. hdl:2158/1252046. PMID 34655517. S2CID 238996621.
  289. ^ Landry, Z.; Kim, S.; Trayler, R. B.; Gilbert, M.; Zazula, G.; Southon, J.; Fraser, D. (2021). "Dietary reconstruction and evidence of prey shifting in Pleistocene and recent gray wolves (Canis lupus) from Yukon Territory". Palaeogeography, Palaeoclimatology, Palaeoecology. 571: Article 110368. Bibcode:2021PPP...57110368L. doi:10.1016/j.palaeo.2021.110368. S2CID 233662657.
  290. ^ Flower, L. O. H.; Schreve, D. C.; Lamb, A. L. (2021). "Nature of the beast? Complex drivers of prey choice, competition and resilience in Pleistocene wolves (Canis lupus L., 1754)" (PDF). Quaternary Science Reviews. 272: Article 107212. Bibcode:2021QSRv..27207212F. doi:10.1016/j.quascirev.2021.107212. S2CID 242767752.
  291. ^ Lahtinen, M.; Clinnick, D.; Mannermaa, K.; Salonen, J. S.; Viranta, S. (2021). "Excess protein enabled dog domestication during severe Ice Age winters". Scientific Reports. 11 (1): Article number 7. Bibcode:2021NatSR..11....7L. doi:10.1038/s41598-020-78214-4. PMC 7790815. PMID 33414490.
  292. ^ Baumann, C.; Pfrengle, S.; Münzel, S. C.; Molak, M.; Feuerborn, T. R.; Breidenstein, A.; Reiter, E.; Albrecht, G.; Kind, C.-J.; Verjux, C.; Leduc, C.; Conard, N. J.; Drucker, D. G.; Giemsch, L.; Thalmann, O.; Bocherens, H.; Schuenemann, V. J. (2021). "A refined proposal for the origin of dogs: the case study of Gnirshöhle, a Magdalenian cave site". Scientific Reports. 11 (1): Article number 5137. Bibcode:2021NatSR..11.5137B. doi:10.1038/s41598-021-83719-7. PMC 7933181. PMID 33664287.
  293. ^ Perri, A. R.; Feuerborn, T. R.; Frantz, L. A. F.; Larson, G.; Malhi, R. S.; Meltzer, D. J.; Witt, K. E. (2021). "Dog domestication and the dual dispersal of people and dogs into the Americas". Proceedings of the National Academy of Sciences of the United States of America. 118 (6): e2010083118. Bibcode:2021PNAS..11810083P. doi:10.1073/pnas.2010083118. PMC 8017920. PMID 33495362.
  294. ^ da Silva Coelho, F. A.; Gill, S.; Tomlin, C. M.; Heaton, T. H.; Lindqvist, C. (2021). "An early dog from southeast Alaska supports a coastal route for the first dog migration into the Americas". Proceedings of the Royal Society B: Biological Sciences. 288 (1945): Article ID 20203103. doi:10.1098/rspb.2020.3103. PMC 7934960. PMID 33622130.
  295. ^ Gardin, A.; Salesa, M. J.; Siliceo, G.; Antón, M.; Pastor, J. F.; de Bonis, L. (2021). "Climbing Adaptations of an Enigmatic Early Arctoid Carnivoran: the Functional Anatomy of the Forelimb of Amphicynodon leptorhynchus From the Lower Oligocene of the Quercy Phosphorites (France)". Journal of Mammalian Evolution. 28 (3): 785–811. doi:10.1007/s10914-021-09553-w. S2CID 236586858.
  296. ^ Luna-Aranguré, C.; Vázquez-Domínguez, E. (2021). "Of pandas, fossils, and bamboo forests: ecological niche modeling of the giant panda (Ailuropoda melanoleuca) during the Last Glacial Maximum". Journal of Mammalogy. 102 (3): 718–730. doi:10.1093/jmammal/gyab033.
  297. ^ Wang, D.; Gao, Z.; Bottazzi, J.; Shao, Q.; Li, Y.; Wu, K.; Zhou, W.; Jiao, F.; Li, S.; Jiangzuo, Q. (2022). "Significance of the preservation of 'pseudo-thumb' in fossil skeletons of giant panda (Ailuropoda melanoleuca) in Shuanghe Cave, Guizhou Province, southern China". Historical Biology: An International Journal of Paleobiology. 34 (11): 2188–2194. Bibcode:2022HBio...34.2188W. doi:10.1080/08912963.2021.2006195. S2CID 244424393.
  298. ^ Pedersen, M. W.; De Sanctis, B.; Saremi, N. F.; Sikora, M.; Puckett, E. E.; Gu, Z.; Moon, K. L.; Kapp, J. D.; Vinner, L.; Vardanyan, Z.; Ardelean, C. F.; Arroyo-Cabrales, J.; Cahill, J. A.; Heintzman, P. D.; Zazula, G.; MacPhee, R. D. E.; Shapiro, B.; Durbin, R.; Willerslev, E. (2021). "Environmental genomics of Late Pleistocene black bears and giant short-faced bears". Current Biology. 31 (12): 2728–2736.e8. doi:10.1016/j.cub.2021.04.027. hdl:10037/22808. PMID 33878301. S2CID 233303447.
  299. ^ Barlow, A.; Paijmans, J. L. A.; Alberti, F.; Gasparyan, B.; Bar-Oz, G.; Pinhasi, R.; Foronova, I.; Puzachenko, A. Y.; Pacher, M.; Dalén, L.; Baryshnikov, G.; Hofreiter, M. (2021). "Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears" (PDF). Current Biology. 31 (8): 1771–1779.e7. doi:10.1016/j.cub.2021.01.073. PMID 33592193. S2CID 231930115.
  300. ^ Gimranov, D.; Kosintsev, P.; Baryshnikov, G. F. (2021). "Variability of the lower incisors in the cave bears (Carnivora, Ursidae) from the Caucasus and Urals". Comptes Rendus Palevol. 20 (25): 539–553. doi:10.5852/cr-palevol2021v20a25. S2CID 241978215.
  301. ^ Segawa, T.; Yonezawa, T.; Mori, H.; Akiyoshi, A.; Allentoft, M. E.; Kohno, A.; Tokanai, F.; Willerslev, E.; Kohno, N.; Nishihara, H. (2021). "Ancient DNA reveals multiple origins and migration waves of extinct Japanese brown bear lineages". Royal Society Open Science. 8 (8): Article ID 210518. Bibcode:2021RSOS....810518S. doi:10.1098/rsos.210518. PMC 8334828. PMID 34386259. S2CID 236898469.
  302. ^ Barrett, P. Z.; Hopkins, W. S. B.; Price, S. A. (2021). "How many sabertooths? Reevaluating the number of carnivoran sabertooth lineages with total-evidence Bayesian techniques and a novel origin of the Miocene Nimravidae". Journal of Vertebrate Paleontology. 41 (1): e1923523. Bibcode:2021JVPal..41E3523B. doi:10.1080/02724634.2021.1923523. S2CID 236221655.
  303. ^ Werdelin, L. (2022). "African Barbourofelinae (Mammalia, Nimravidae): a critical review". Historical Biology: An International Journal of Paleobiology. 34 (8): 1347–1355. Bibcode:2022HBio...34.1347W. doi:10.1080/08912963.2021.1998034. S2CID 244015910.
  304. ^ Kargopoulos, N.; Kampouridis, P.; Lechner, T.; Böhme, M. (2022). "Hyaenidae (Carnivora) from the Late Miocene hominid locality of Hammerschmiede (Bavaria, Germany)". Historical Biology: An International Journal of Paleobiology. 34 (11): 2249–2258. Bibcode:2022HBio...34.2249K. doi:10.1080/08912963.2021.2010193. S2CID 244913608.
  305. ^ Liu, Jinyi; Liu, Jinyuan; Zhang, H.; Wagner, J.; Jiangzuo, Q.; Song, Y.; Liu, S.; Wang, Y.; Jin, C. (2021). "The giant short-faced hyena Pachycrocuta brevirostris (Mammalia, Carnivora, Hyaenidae) from Northeast Asia: A reinterpretation of subspecies differentiation and intercontinental dispersal". Quaternary International. 577: 29–51. Bibcode:2021QuInt.577...29L. doi:10.1016/j.quaint.2020.12.031. S2CID 234125458.
  306. ^ Marciszak, A.; Semenov, Y.; Portnicki, P.; Derkach, T. (2021). "First record of Pachycrocuta brevirostris (Gervais, 1850) from Ukraine on the background of the European occurrence of the species". Journal of Iberian Geology. 47 (3): 535–549. Bibcode:2021JIbG...47..535M. doi:10.1007/s41513-021-00164-1. S2CID 231877455.
  307. ^ Iannucci, A.; Mecozzi, B.; Sardella, R.; Iurino, D. A. (2021). "The extinction of the giant hyena Pachycrocuta brevirostris and a reappraisal of the Epivillafranchian and Galerian Hyaenidae in Europe: Faunal turnover during the Early–Middle Pleistocene Transition". Quaternary Science Reviews. 272: Article 107240. Bibcode:2021QSRv..27207240I. doi:10.1016/j.quascirev.2021.107240. S2CID 239548772.
  308. ^ Pérez-Claros, J. A.; Coca-Ortega, C.; Werdelin, L. (2021). "How many hyenas in North America? A quantitative perspective". Journal of Vertebrate Paleontology. 41 (3): e1979988. Bibcode:2021JVPal..41E9988P. doi:10.1080/02724634.2021.1979988. S2CID 244614066.
  309. ^ Hu, J.; Westbury, M. V.; Yuan, J.; Zhang, Z.; Chen, S.; Xiao, B.; Hou, X.; Ji, H.; Lai, X.; Hofreiter, M.; Sheng, G. (2021). "Ancient mitochondrial genomes from Chinese cave hyenas provide insights into the evolutionary history of the genus Crocuta". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202934. doi:10.1098/rspb.2020.2934. PMC 7893252. PMID 33499784.
  310. ^ Chatar, N.; Fischer, V.; Siliceo, G.; Antón, M.; Morales, J.; Salesa, M. J. (2021). "Morphometric Analysis of the Mandible of Primitive Sabertoothed Felids from the late Miocene of Spain". Journal of Mammalian Evolution. 28 (3): 753–771. doi:10.1007/s10914-021-09541-0. hdl:2268/259634. S2CID 225170582.
  311. ^ Madurell-Malapeira, J.; Rodríguez-Hidalgo, A.; Aouraghe, H.; Haddoumi, H.; Bartolini Lucenti, S.; Oujaa, A.; Saladié, P.; Bengamra, S.; Marín, J.; Souhir, M.; Farkouch, M.; Mhamdi, H.; Aissa, A. M.; Werdelin, L.; Chacón, M. G.; Sala-Ramos, R. (2021). "First small-sized Dinofelis: Evidence from the Plio-Pleistocene of North Africa". Quaternary Science Reviews. 265: Article 107028. Bibcode:2021QSRv..26507028M. doi:10.1016/j.quascirev.2021.107028. S2CID 237702164.
  312. ^ DeSantis, L. R. G.; Feranec, R. S.; Antón, M.; Lundelius Jr., E. L. (2021). "Dietary ecology of the scimitar-toothed cat Homotherium serum". Current Biology. 31 (12): 2674–2681.e3. doi:10.1016/j.cub.2021.03.061. PMID 33862006. S2CID 233247330.
  313. ^ Li, Y.; Sun, B. (2021). "Megantereon (Carnivora, Felidae) in the late Early Pleistocene in China and its implications for paleobiogeography". Quaternary International. 610: 97–107. doi:10.1016/j.quaint.2021.09.008. S2CID 240564316.
  314. ^ Reynolds, A. R.; Seymour, K. L.; Evans, D. C. (2021). "Smilodon fatalis siblings reveal life history in a saber-toothed cat". iScience. 24 (1): Article 101916. Bibcode:2021iSci...24j1916R. doi:10.1016/j.isci.2020.101916. PMC 7835254. PMID 33532710.
  315. ^ Balisi, M. A.; Sharma, A. K.; Howard, C. M.; Shaw, C. A.; Klapper, R.; Lindsey, E. L. (2021). "Computed tomography reveals hip dysplasia in the extinct Pleistocene saber-tooth cat Smilodon". Scientific Reports. 11 (1): Article number 21271. Bibcode:2021NatSR..1121271B. doi:10.1038/s41598-021-99853-1. PMC 8553773. PMID 34711910.
  316. ^ Mecozzi, B.; Sardella, R.; Boscaini, A.; Cherin, M.; Costeur, L.; Madurell-Malapeira, J.; Pavia, M.; Profico, A.; Iurino, D. A. (2021). "The tale of a short-tailed cat: New outstanding Late Pleistocene fossils of Lynx pardinus from southern Italy". Quaternary Science Reviews. 262: Article 106840. Bibcode:2021QSRv..26206840M. doi:10.1016/j.quascirev.2021.106840. hdl:11573/1546549. S2CID 233635913.
  317. ^ Balassa, D.; Prothero, D. R.; Syverson, V. J. P. (2021). "How did cougars and bobcats respond to the end of the ice ages? Evidence from La Brea Tar Pits". New Mexico Museum of Natural History and Science Bulletin. 82: 1–7.
  318. ^ Chi, T.; Gan, Y.; Yang, T.; Chang, C. (2021). "First report of leopard fossils from a limestone cave in Kenting area, southern Taiwan". PeerJ. 9: e12020. doi:10.7717/peerj.12020. PMC 8388558. PMID 34513335.
  319. ^ Boeskorov, G. G.; Plotnikov, V. V.; Protopopov, A. V.; Baryshnikov, G. F.; Fosse, P.; Dalén, L.; Stanton, D. W. G.; Pavlov, I. S.; Suzuki, N.; Tikhonov, A. N. (2021). "The Preliminary Analysis of Cave Lion Cubs Panthera spelaea (Goldfuss, 1810) from the Permafrost of Siberia". Quaternary. 4 (3): Article 24. doi:10.3390/quat4030024.
  320. ^ Cooper, D. M.; Dugmore, A. J.; Kitchener, A. C.; Metzger, M. J.; Trabucco, A. (2021). "A kingdom in decline: Holocene range contraction of the lion (Panthera leo) modelled with global environmental stratification". PeerJ. 9: e10504. doi:10.7717/peerj.10504. PMC 7891088. PMID 33628628.
  321. ^ Bartolini-Lucenti, S.; Madurell-Malapeira, J.; Martínez-Navarro, B.; Cirilli, O.; Pandolfi, L.; Rook, L.; Bushkhianidze, M.; Lordkipanidze, D. (2021). "A comparative study of the Early Pleistocene carnivore guild from Dmanisi (Georgia)". Journal of Human Evolution. 162: Article 103108. doi:10.1016/j.jhevol.2021.103108. PMID 34852965. S2CID 244719669.
  322. ^ Dantas, M. A. T.; Bernardes, C.; Asevedo, L.; Pansani, T. R.; França, L. M.; Aragão, W. S.; Santos, F. S.; Cravo, E.; Ximenes, C. (2021). "Isotopic palaeoecology (δ13C) of three faunivores from Late Pleistocene of the Brazilian intertropical region". Historical Biology: An International Journal of Paleobiology. 34 (3): 507–514. doi:10.1080/08912963.2021.1933468. S2CID 236272572.
  323. ^ Salis, A. T.; Bray, S. C. E.; Lee, M. S. Y.; Heiniger, H.; Barnett, R.; Burns, J. A.; Doronichev, V.; Fedje, D.; Golovanova, L.; Harington, C. R.; Hockett, B.; Kosintsev, P.; Lai, X.; Mackie, Q.; Vasiliev, S.; Weinstock, J.; Yamaguchi, N.; Meachen, J. A.; Cooper, A.; Mitchell, K. J. (2022). "Lions and brown bears colonized North America in multiple synchronous waves of dispersal across the Bering Land Bridge" (PDF). Molecular Ecology. 31 (24): 6407–6421. Bibcode:2022MolEc..31.6407S. doi:10.1111/mec.16267. hdl:11343/299180. PMID 34748674. S2CID 243861841.
  324. ^ Rosina, V.; Pickford, M. (2022). "The new small emballonurid (Emballonuridae, Chiroptera, Mammalia) from the Miocene of Africa: its phylogenetic and palaeogeographic implications". Historical Biology: An International Journal of Paleobiology. 34 (7): 1240–1251. Bibcode:2022HBio...34.1240R. doi:10.1080/08912963.2021.1973451. S2CID 239134133.
  325. ^ Jones, M. F.; Li, Q.; Ni, X.; Beard, K. C. (2021). "The earliest Asian bats (Mammalia: Chiroptera) address major gaps in bat evolution". Biology Letters. 17 (6): Article ID 20210185. doi:10.1098/rsbl.2021.0185. PMC 8241488. PMID 34186001. S2CID 235676184.
  326. ^ Maugoust, J.; Orliac, M. J. (2021). "Endocranial cast anatomy of the extinct hipposiderid bats Palaeophyllophora and Hipposideros (Pseudorhinolophus) (Mammalia: Chiroptera)" (PDF). Journal of Mammalian Evolution. 28 (3): 679–706. doi:10.1007/s10914-020-09522-9. S2CID 234163031.
  327. ^ López-Aguirre, C.; Czaplewski, N. J.; Link, A.; Takai, M.; Hand, S. J. (2021). "Dietary and body-mass reconstruction of the Miocene neotropical bat Notonycteris magdalenensis (Phyllostomidae) from La Venta, Colombia". Paleobiology. 48: 137–153. doi:10.1017/pab.2021.21. S2CID 237837220.
  328. ^ Moroz, M.; Jackson, I. S. C.; Ramirez, D.; Kemp, M. E. (2021). "Divergent morphological responses to millennia of climate change in two species of bats from Hall's Cave, Texas, USA". PeerJ. 9: e10856. doi:10.7717/peerj.10856. PMC 7971077. PMID 33777514.
  329. ^ González-Dionis, J.; Castillo Ruiz, C.; Cruzado-Caballero, P.; Cadavid-Melero, E.; Crespo, V. D. (2021). "First study of the bat fossil record of the mid-Atlantic volcanic islands". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 113: 13–27. doi:10.1017/S1755691021000384. S2CID 244885244.
  330. ^ a b c d e f Hooker, J. J. (2021). "The Mammals of the Late Eocene – Early Oligocene Solent Group. Part 1, introduction and Euarchonta: Nyctitheriidae". Monographs of the Palaeontographical Society. 175 (659): 1–147. doi:10.1080/02693445.2021.1928440. S2CID 245133140.
  331. ^ Das, D. P.; Carolin, N.; Bajpai, S. (2022). "A nyctitheriid insectivore (Eulipotyphla, Mammalia) of Asian affinity from the early Eocene of India". Historical Biology: An International Journal of Paleobiology. 34 (7): 1157–1165. Bibcode:2022HBio...34.1157D. doi:10.1080/08912963.2021.1966002. S2CID 238735010.
  332. ^ Vitek, N. S.; Morse, P. E.; Boyer, D. M.; Strait, S. G.; Bloch, J. I. (2021). "Evaluating the responses of three closely related small mammal lineages to climate change across the Paleocene–Eocene thermal maximum". Paleobiology. 47 (3): 464–486. Bibcode:2021Pbio...47..464V. doi:10.1017/pab.2021.12. S2CID 233635792.
  333. ^ Terray, L.; Stoetzel, E.; Herrel, A.; Cornette, R. (2021). "The contribution of functional traits to the understanding of palaeoenvironmental changes". Biological Journal of the Linnean Society. 133 (4): 1110–1125. doi:10.1093/biolinnean/blab057.
  334. ^ Vera, B.; Scarano, A. C.; Reguero, M. A. (2021). "A new Interatheriinae (Mammalia, Notoungulata) from the Cerro Boleadoras Formation (Santa Cruz, Argentina) and the evolution of the tarsus within the lineage during the Miocene". Journal of Systematic Palaeontology. 19 (14): 1003–1030. Bibcode:2021JSPal..19.1003V. doi:10.1080/14772019.2021.1995906. S2CID 245210493.
  335. ^ Fernández, M.; Zimicz, A. N.; Bond, M.; Chornogubsky, L.; Arnal, M.; Cárdenas, M.; Fernicola, J. C. (2021). "New Eocene South American native ungulates from the Quebrada de los Colorados Formation at Los Cardones National Park, Argentina". Acta Palaeontologica Polonica. 66 (1): 85–97. doi:10.4202/app.00784.2020. hdl:11336/131113. S2CID 234198606.
  336. ^ Castro, L. O. R.; García-López, D.; Bergqvist, L. P.; de Araújo-Júnior, H. I. (2021). "A new basal notoungulate from the Itaboraí Basin (Paleogene) of Brazil". Ameghiniana. 58 (3): 272–288. doi:10.5710/AMGH.05.02.2021.3387. S2CID 234220780.
  337. ^ Fernández, M.; Fernicola, J. C.; Cerdeño, E. (2021). "A new genus of Interatheriinae (Interatheriidae, Notoungulata) from the Santa Cruz Formation (early–middle Miocene), Santa Cruz Province, Argentina, and the revision of the genus Cochilius Ameghino, 1902". Journal of Vertebrate Paleontology. 41 (4): e1956940. Bibcode:2021JVPal..41E6940F. doi:10.1080/02724634.2021.1956940. S2CID 239647102.
  338. ^ Martínez, G.; Dozo, M. T.; Gelfo, J. N.; Ciancio, M. R.; González-José, R. (2021). "A new toxodont (Mammalia, Panperissodactyla, Notoungulata) from the Oligocene of Patagonia, Argentina, and systematic considerations on the paraphyletic 'Notohippidae'". Journal of Systematic Palaeontology. 18 (24): 1995–2013. doi:10.1080/14772019.2021.1872723. S2CID 232116246.
  339. ^ Solórzano, A.; Núñez-Flores, M. (2021). "Evolutionary trends of body size and hypsodonty in notoungulates and their probable drivers". Palaeogeography, Palaeoclimatology, Palaeoecology. 568: Article 110306. Bibcode:2021PPP...56810306S. doi:10.1016/j.palaeo.2021.110306. S2CID 233537649.
  340. ^ Perini, F. A.; Macrini, T. E.; Flynn, J. J.; Bamba, K.; Ni, X.; Croft, D. A.; Wyss, A. R. (2021). "Comparative Endocranial Anatomy, Encephalization, and Phylogeny of Notoungulata (Placentalia, Mammalia)". Journal of Mammalian Evolution. 29 (2): 369–394. doi:10.1007/s10914-021-09583-4. S2CID 244540627.
  341. ^ Braunn, P. R.; Ferigolo, J.; Ribeiro, A. M. (2021). "Enamel microstructure of permanent and deciduous teeth of a species of notoungulate Toxodon: Development, functional, and evolutionary implications". Acta Palaeontologica Polonica. 66 (2): 449–464. doi:10.4202/app.00772.2020.
  342. ^ Scarano, A. C.; Vera, B.; Reguero, M. (2021). "Evolutionary trends of Protypotherium (Interatheriidae, Notoungulata) lineage throughout the Miocene of South America". Journal of Mammalian Evolution. 28 (3): 885–895. doi:10.1007/s10914-020-09534-5. S2CID 230986107.
  343. ^ Fernández, M.; Fernicola, J. C.; Cerdeño, E. (2021). "Deciduous dentition and dental eruption sequence in Interatheriinae (Notoungulata, Interatheriidae): implications in the systematics of the group". Journal of Paleontology. 95 (4): 861–885. Bibcode:2021JPal...95..861F. doi:10.1017/jpa.2021.7. S2CID 233649237.
  344. ^ Ercoli, M. D.; Armella, M. A. (2021). "Snout shape and masticatory apparatus of the rodent-like mesotheriid ungulates (Notoungulata, Typotheria): exploring evolutionary trends in dietary strategies through ancestral reconstructions". Palaeontology. 64 (3): 385–408. doi:10.1111/pala.12530. S2CID 233684440.
  345. ^ Armella, M. A. (2021). "Tooth Size Variation in Assemblages of Tremacyllus (Hegetotheriidae, Notoungulata): Insights into Geographical Gradients, Systematics, and Sexual Dimorphism". Journal of Mammalian Evolution. 29: 113–128. doi:10.1007/s10914-021-09575-4. S2CID 244221777.
  346. ^ Sun, D.; Deng, T.; Jiangzuo, Q. (2021). "The most primitive Elasmotherium (Perissodactyla, Rhinocerotidae) from the Late Miocene of northern China". Historical Biology: An International Journal of Paleobiology. 34 (2): 201–211. doi:10.1080/08912963.2021.1907368. S2CID 235558419.
  347. ^ Geraads, D.; Zouhri, S. (2021). "A new late Miocene elasmotheriine rhinoceros from Morocco". Acta Palaeontologica Polonica. 66 (4): 753–765. doi:10.4202/app.00904.2021. S2CID 239058309.
  348. ^ Bai, Bin; Meng, Jin; Zhang, Chi; Gong, Yan-Xin; Wang, Yuan-Qing (2021-03-04). "Publisher Correction: Author Correction: The origin of Rhinocerotoidea and phylogeny of Ceratomorpha (Mammalia, Perissodactyla)". Communications Biology. 4 (1): 320. doi:10.1038/s42003-021-01852-5. ISSN 2399-3642. PMC 7933141. PMID 33664436.
  349. ^ a b Perales-Gogenola, L.; Badiola, A.; Gómez-Olivencia, A.; Pereda-Suberbiola, X. (2021). "New Leptolophus (Palaeotheriidae) species from the Iberian Peninsula and early evidence of hypsodonty in an Eocene perissodactyl". Journal of Vertebrate Paleontology. 41 (1): e1912061. Bibcode:2021JVPal..41E2061P. doi:10.1080/02724634.2021.1912061. S2CID 236397348.
  350. ^ Giaourtsakis, I. X. (2022). "The Fossil Record of Rhinocerotids (Mammalia: Perissodactyla: Rhinocerotidae) in Greece". In E. Vlachos (ed.). Fossil Vertebrates of Greece Vol. 2. Springer. pp. 409–500. doi:10.1007/978-3-030-68442-6_14. ISBN 978-3-030-68441-9. S2CID 239883886.
  351. ^ Antoine, P.-O.; Reyes, M. C.; Amano, N.; Bautista, A. P.; Chang, C.-H.; Claude, J.; De Vos, J.; Ingicco, T. (2021). "A new rhinoceros clade from the Pleistocene of Asia sheds light on mammal dispersals to the Philippines". Zoological Journal of the Linnean Society. 194 (2): 416–430. doi:10.1093/zoolinnean/zlab009.
  352. ^ Deng, T.; Lu, X.; Wang, S.; Flynn, L. J.; Sun, D.; He, W.; Chen, S. (2021). "An Oligocene giant rhino provides insights into Paraceratherium evolution". Communications Biology. 4 (1): Article number 639. doi:10.1038/s42003-021-02170-6. PMC 8211792. PMID 34140631.
  353. ^ Pandolfi, L.; Pierre-Olivier, A.; Bukhsianidze, M.; Lordkipanidze, D.; Rook, L. (2021). "Northern Eurasian rhinocerotines (Mammalia, Perissodactyla) by the Pliocene–Pleistocene transition: phylogeny and historical biogeography". Journal of Systematic Palaeontology. 19 (15): 1031–1057. Bibcode:2021JSPal..19.1031P. doi:10.1080/14772019.2021.1995907. S2CID 244762077.
  354. ^ Tissier, J.; Antoine, P.-O.; Becker, D. (2021). "New species, revision, and phylogeny of Ronzotherium Aymard, 1854 (Perissodactyla, Rhinocerotidae)". European Journal of Taxonomy (753): 1–80. doi:10.5852/ejt.2021.753.1389. S2CID 236275994.
  355. ^ a b Pablo Librado; et al. (October 2021). "The origins and spread of domestic horses from the Western Eurasian steppes". Nature. 598 (7882): 634–640. Bibcode:2021Natur.598..634L. doi:10.1038/s41586-021-04018-9. ISSN 1476-4687. PMC 8550961. PMID 34671162.
  356. ^ Vautrin, Q.; Tabuce, R.; Lihoreau, F.; Bronnert, C.; Gheerbrant, E.; Godinot, M.; Metais, G.; Yans, J.; Dutour, Y.; Vialle, N.; Philip, J.; Billet, G. (2021). "New Remains of Lophiaspis maurettei (Mammalia, Perissodactyla) from the Early Eocene of France and the Implications for the Origin of the Lophiodontidae" (PDF). Journal of Vertebrate Paleontology. 40 (6): e1878200. doi:10.1080/02724634.2020.1878200. S2CID 233680856.
  357. ^ Handa, N.; Nakatsukasa, M.; Kunimatsu, Y.; Tsubamoto, T.; Nakaya, H. (2021). "The Chalicotheriidae (Mammalia, Perissodactyla) from the upper Miocene Nakali Formation, Kenya". Historical Biology: An International Journal of Paleobiology. 33 (12): 3522–3529. Bibcode:2021HBio...33.3522H. doi:10.1080/08912963.2021.1876042. S2CID 234015871.
  358. ^ Mallet, C.; Houssaye, A.; Cornette, R.; Billet, G. (2022). "Long bone shape variation in the forelimb of Rhinocerotoidea: relation with size, body mass and body proportions". Zoological Journal of the Linnean Society. 196 (3): 1201–1234. doi:10.1093/zoolinnean/zlab095.
  359. ^ Pandolfi, L.; Calvo, R.; Grossman, A.; Rabinovich, R. (2021). "Rhinocerotidae from the early Miocene of the Negev (Israel) and implications for the dispersal of early Neogene rhinoceroses". Journal of Paleontology. 95 (6): 1340–1351. Bibcode:2021JPal...95.1340P. doi:10.1017/jpa.2021.64.
  360. ^ Li, Z.; Li, Y.; Zhang, Y.; Xie, K.; Li, Z.; Chen, Y. (2021). "New material of Aprotodon lanzhouensis (Perissodactyla, Rhinocerotidae) from the Early Miocene in Northwest China". Geological Journal. 56 (9): 4779–4787. Bibcode:2021GeolJ..56.4779L. doi:10.1002/gj.4212. S2CID 237834591.
  361. ^ Hullot, M.; Laurent, Y.; Merceron, G.; Antoine, P.-O. (2021). "Paleoecology of the Rhinocerotidae (Mammalia, Perissodactyla) from Béon 1, Montréal-du-Gers (late early Miocene, SW France): Insights from dental microwear texture analysis, mesowear, and enamel hypoplasia". Palaeontologia Electronica. 24 (2): Article number 24.2.a27. doi:10.26879/1163.
  362. ^ Titov, V.V.; Baigusheva, V.S.; Uchytel, R.S (2021). "The experience in reconstructing of the head of Elasmotherium (Rhinocerotidae)" (PDF). Russian Journal of Theriology. 20 (2): 173–182. doi:10.15298/rusjtheriol.20.2.06. S2CID 244138119.
  363. ^ Lobachev, Y.V.; Shpansky, A.V.; Bondarev, A.A.; Lobachev, A.Y.; Vasiliev, S.K.; Klementev, A.M.; Grebnev, I.E.; Silaev, V.I. (2021). "New findings of Stephanorhinus kirchbergensis in Siberia". Palaeontologia Electronica. 24 (1): Article number 24.1.a14. doi:10.26879/734.
  364. ^ Rey-Iglesia, A.; Lister, A. M.; Stuart, A. J.; Bocherens, H.; Szpak, P.; Willerslev, E.; Lorenzen, E. D. (2021). "Late Pleistocene paleoecology and phylogeography of woolly rhinoceroses". Quaternary Science Reviews. 263: Article 106993. Bibcode:2021QSRv..26306993R. doi:10.1016/j.quascirev.2021.106993. S2CID 236234739.
  365. ^ Puzachenko, A. Yu.; Levchenko, V. A.; Bertuch, F.; Zazovskaya, E. P.; Kirillova, I. V. (2021). "Late Pleistocene chronology and environment of woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)) in Beringia". Quaternary Science Reviews. 263: Article 106994. Bibcode:2021QSRv..26306994P. doi:10.1016/j.quascirev.2021.106994. S2CID 236317042.
  366. ^ Liu, S.; Westbury, M. V.; Dussex, N.; Mitchell, K. J.; Sinding, M-H. S.; Heintzman, P. D.; Duchêne, D. A.; Kapp, J. D.; von Seth, J.; Heiniger, H.; Sánchez-Barreiro, F.; Margaryan, A.; André-Olsen, R.; De Cahsan, B.; Meng, G.; Yang, C.; Chen, L.; van der Valk, T.; Moodley, Y.; Rookmaaker, K.; Bruford, M. W.; Ryder, O.; Steiner, C.; Bruins-van Sonsbeek, L. G. R.; Vartanyan, S.; Guo, C.; Cooper, A.; Kosintsev, P.; Kirillova, I.; Lister, A. M.; Marques-Bonet, T.; Gopalakrishnan, S.; Dunn, R. R.; Lorenzen, E. D.; Shapiro, B.; Zhang, G.; Antoine, P.-O.; Dalén, L.; Gilbert, M. T. P. (2021). "Ancient and modern genomes unravel the evolutionary history of the rhinoceros family". Cell. 184 (19): 4874–4885.e16. doi:10.1016/j.cell.2021.07.032. hdl:10230/48693. PMID 34433011. S2CID 237273079.
  367. ^ Mihlbachler, M. C.; Prothero, D. R. (2021). "Eocene (Duchesnean and earliest Chadronian) brontotheres (Brontotheriidae), Protitanops curryi and cf. Parvicornus occidentalis, from west Texas and Mexico". Palaeontologia Electronica. 24 (3): Article number 24.3.35A. doi:10.26879/944.
  368. ^ MacLaren, J. A. (2021). "Biogeography a key influence on distal forelimb variation in horses through the Cenozoic". Proceedings of the Royal Society B: Biological Sciences. 288 (1942): Article ID 20202465. doi:10.1098/rspb.2020.2465. PMC 7892410. PMID 33434465.
  369. ^ Vincelette, A. (2021). "Determining the gait of Miocene, Pliocene, and Pleistocene horses from fossilized trackways". Fossil Record. 24 (1): 151–169. Bibcode:2021FossR..24..151V. doi:10.5194/fr-24-151-2021.
  370. ^ Bernor, R. L.; Kaya, F.; Kaakinen, A.; Saarinen, J.; Fortelius, M. (2021). "Old world hipparion evolution, biogeography, climatology and ecology". Earth-Science Reviews. 221: Article 103784. Bibcode:2021ESRv..22103784B. doi:10.1016/j.earscirev.2021.103784.
  371. ^ Nacarino-Meneses, C.; Chinsamy, A. (2022). "Mineralized-tissue histology reveals protracted life history in the Pliocene three-toed horse from Langebaanweg (South Africa)". Zoological Journal of the Linnean Society. 196 (3): 1117–1137. doi:10.1093/zoolinnean/zlab037.
  372. ^ Labarca, R.; Caro, F. J.; Villavicencio, N. A.; Capriles, J. M.; Briones, E.; Latorre, C.; Santoro, C. M. (2021). "A Partially Complete Skeleton of Hippidion saldiasi Roth, 1899 (Mammalia: Perissodactyla) from the Late Pleistocene of the High Andes in Northern Chile". Journal of Vertebrate Paleontology. 40 (6): e1862132. doi:10.1080/02724634.2020.1862132. S2CID 233706381.
  373. ^ Saarinen, J.; Cirilli, O.; Strani, F.; Meshida, K.; Bernor, R. L. (2021). "Testing Equid Body Mass Estimate Equations on Modern Zebras—With Implications to Understanding the Relationship of Body Size, Diet, and Habitats of Equus in the Pleistocene of Europe". Frontiers in Ecology and Evolution. 9: Article 622412. doi:10.3389/fevo.2021.622412. hdl:11573/1505920.
  374. ^ Cirilli, O.; Pandolfi, L.; Rook, L.; Bernor, R. L. (2021). "Evolution of Old World Equus and origin of the zebra-ass clade". Scientific Reports. 11 (1): Article number 10156. Bibcode:2021NatSR..1110156C. doi:10.1038/s41598-021-89440-9. PMC 8114910. PMID 33980921.
  375. ^ Cirilli, O.; Saarinen, J.; Pandolfi, L.; Rook, L.; Bernor, R. L. (2021). "An updated review on Equus stenonis (Mammalia, Perissodactyla): New implications for the European early Pleistocene Equus taxonomy and paleoecology, and remarks on the Old World Equus evolution". Quaternary Science Reviews. 269: Article 107155. Bibcode:2021QSRv..26907155C. doi:10.1016/j.quascirev.2021.107155.
  376. ^ Bernor, R. L.; Cirilli, O.; Bukhsianidze, M.; Lordkipanidze, D.; Rook, L. (2021). "The Dmanisi Equus: Systematics, biogeography, and paleoecology". Journal of Human Evolution. 158: Article 103051. doi:10.1016/j.jhevol.2021.103051. PMID 34365132.
  377. ^ O'Brien, K.; Tryon, C. A.; Blegen, N.; Kimeu, B.; Rowan, J.; Faith, J. T. (2021). "First appearance of Grévy's zebra (Equus grevyi), from the middle Pleistocene Kapthurin Formation, Kenya, sheds light on the evolution and paleoecology of large zebras". Quaternary Science Reviews. 256: Article 106835. Bibcode:2021QSRv..25606835O. doi:10.1016/j.quascirev.2021.106835. S2CID 233638447.
  378. ^ Gkeme, A. G.; Koufos, G. D.; Kostopoulos, D. S. (2021). "Reconsidering the Equids from the Early Pleistocene Fauna of Apollonia 1 (Mygdonia Basin, Greece)". Quaternary. 4 (2): Article 12. doi:10.3390/quat4020012.
  379. ^ Vershinina, A. O.; Heintzman, P. D.; Froese, D. G.; Zazula, G.; Cassatt-Johnstone, M.; Dalén, L.; Der Sarkissian, C.; Dunn, S. G.; Ermini, L.; Gamba, C.; Groves, P.; Kapp, J. D.; Mann, D. H.; Seguin-Orlando, A.; Southon, J.; Stiller, M.; Wooller, M. J.; Baryshnikov, G.; Gimranov, D.; Scott, E.; Hall, E.; Hewitson, S.; Kirillova, I.; Kosintsev, P.; Shidlovsky, F.; Tong, H.-W.; Tiunov, M. P.; Vartanyan, S.; Orlando, L.; Corbett-Detig, R.; MacPhee, R. D.; Shapiro, B. (2021). "Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge". Molecular Ecology. 30 (23): 6144–6161. Bibcode:2021MolEc..30.6144V. doi:10.1111/mec.15977. hdl:10037/24463. PMID 33971056. S2CID 234360028.
  380. ^ Tomassini, R. L.; Pesquero, M. D.; Garrone, M. C.; Marin-Monfort, M. D.; Cerda, I. A.; Prado, J. L.; Montalvo, C. I.; Fernández-Jalvo, Y.; Alberdi, M. T. (2021). "First osteohistological and histotaphonomic approach of Equus occidentalis Leidy, 1865 (Mammalia, Equidae) from the late Pleistocene of Rancho La Brea (California, USA)". PLOS ONE. 16 (12): e0261915. Bibcode:2021PLoSO..1661915T. doi:10.1371/journal.pone.0261915. PMC 8714125. PMID 34962948.
  381. ^ "Scientists found modern domestic horses' homeland in southwestern Russia". Science News. 20 October 2021. Retrieved 14 November 2021.
  382. ^ a b c Solé, F.; Morlo, M.; Schaal, T.; Lehmann, T. (2021). "New hyaenodonts (Mammalia) from the late Ypresian locality of Prémontré (France) support a radiation of the hyaenodonts in Europe already at the end of the early Eocene". Geobios. 66–67: 119–141. Bibcode:2021Geobi..66..119S. doi:10.1016/j.geobios.2021.02.004. S2CID 234848856.
  383. ^ Flink, T.; Cote, S.; Rossie, J. B.; Kibii, J. M.; Werdelin, L. (2021). "The neurocranium of Ekweeconfractus amorui gen. et sp. nov. (Hyaenodonta, Mammalia) and the evolution of the brain in some hyaenodontan carnivores". Journal of Vertebrate Paleontology. 41 (2): e1927748. Bibcode:2021JVPal..41E7748F. doi:10.1080/02724634.2021.1927748. S2CID 237518007.
  384. ^ Tomiya, S.; Zack, S. P.; Spaulding, M.; Flynn, J. J. (2021). "Carnivorous mammals from the middle Eocene Washakie Formation, Wyoming, USA, and their diversity trajectory in a post-warming world". Journal of Paleontology. 95 (Supplement S82): 1–115. Bibcode:2021JPal...95S...1T. doi:10.1017/jpa.2020.74. hdl:2433/274918. S2CID 232358160.
  385. ^ Terhune, C. E.; Gaudin, T.; Curran, S.; Petculescu, A. (2021). "The youngest pangolin (Mammalia, Pholidota) from Europe". Journal of Vertebrate Paleontology. 41 (4): e1990075. Bibcode:2021JVPal..41E0075T. doi:10.1080/02724634.2021.1990075. S2CID 245394367.
  386. ^ de Oliveira, K.; Asevedo, L.; Calegari, M. R.; Gelfo, J. N.; Mothé, D.; Avilla, L. (2021). "From oral pathology to feeding ecology: The first dental calculus paleodiet study of a South American native megamammal". Journal of South American Earth Sciences. 109: Article 103281. Bibcode:2021JSAES.10903281D. doi:10.1016/j.jsames.2021.103281. S2CID 233678648.
  387. ^ Solé, F.; Morse, P. E.; Bloch, J. I.; Gingerich, P. D.; Smith, T. (2021). "New specimens of the mesonychid Dissacus praenuntius from the early Eocene of Wyoming and evaluation of body size through the PETM in North America". Geobios. 66–67: 103–118. Bibcode:2021Geobi..66..103S. doi:10.1016/j.geobios.2021.02.005. S2CID 234877826.
  388. ^ Dubied, M.; Solé, F.; Mennecart, B. (2021). "Endocranium and ecology of Eurotherium theriodis, a European hyaenodont mammal from the Lutetian". Acta Palaeontologica Polonica. 66 (3): 545–554. doi:10.4202/app.00771.2020.
  389. ^ Fernicola, J. C.; Zimicz, A. N.; Chornogubsky, L.; Ducea, M.; Cruz, L. E.; Bond, M.; Arnal, M.; Cárdenas, M.; Fernández, M. (2021). "The Early Eocene Climatic Optimum at the Lower Section of the Lumbrera Formation (Ypresian, Salta Province, Northwestern Argentina): Origin and Early Diversification of the Cingulata". Journal of Mammalian Evolution. 28 (3): 621–633. doi:10.1007/s10914-021-09545-w. S2CID 236602601.
  390. ^ Barasoain, D.; González-Ruiz, L.; Zurita, A.; Villarroel, C. (2021). "Oldest new Dasypodini (Xenarthra, Cingulata) provides new trails about armadillos evolutionary history". Historical Biology: An International Journal of Paleobiology. 34 (3): 390–402. doi:10.1080/08912963.2021.1917566. S2CID 235536906.
  391. ^ Fernicola, J. C.; Zimicz, A. N.; Chornogubsky, L.; Cruz, L. E.; Bond, M.; Arnal, M.; Cárdenas, M.; Fernández, M. (2021). "New assemblage of cingulates from the Quebrada de Los Colorados Formation (middle Eocene) at Los Cardones National Park (Salta Province, Argentina) and the Casamayoran SALMA problem at the Northwestern Argentina". Journal of South American Earth Sciences. 111: Article 103476. Bibcode:2021JSAES.11103476F. doi:10.1016/j.jsames.2021.103476.
  392. ^ Herrera, C.; Esteban, G.; Garcia-Lopez, D. A.; Deraco, V.; Babot, J.; del Papa, C.; Bertelli, S.; Giannini, N. (2021). "New Cingulata (Mammalia, Xenarthra) from the Upper Lumbrera Formation (Bartonian, middle Eocene), Salta Province, Argentina". Revista Brasileira de Paleontologia. 24 (3): 236–244. doi:10.4072/rbp.2021.3.05. hdl:11336/153927. S2CID 244225901.
  393. ^ Tambusso, P. S.; Varela, L.; Góis, F.; Moura, J. F.; Villa, C.; Fariña, R. A. (2021). "The inner ear anatomy of glyptodonts and pampatheres (Xenarthra, Cingulata): Functional and phylogenetic implications". Journal of South American Earth Sciences. 108: Article 103189. Bibcode:2021JSAES.10803189T. doi:10.1016/j.jsames.2021.103189. S2CID 234062118.
  394. ^ Le Verger, K.; González Ruiz, L. R.; Billet, G. (2021). "Comparative anatomy and phylogenetic contribution of intracranial osseous canals and cavities in armadillos and glyptodonts (Xenarthra, Cingulata)". Journal of Anatomy. 239 (6): 1473–1502. doi:10.1111/joa.13512. PMC 8602025. PMID 34275130. S2CID 236092941.
  395. ^ Núñez-Blasco, A.; Zurita, A. E.; Miño-Boilini, Á. R.; Bonini, R. A.; Cuadrelli, F. (2021). "The glyptodont Eleutherocercus solidus from the late Neogene of north-western Argentina: Morphology, chronology, and phylogeny". Acta Palaeontologica Polonica. 66 (Supplement to 3): S79–S99. doi:10.4202/app.00824.2020. hdl:11336/183170. S2CID 237333699.
  396. ^ Zamorano, M.; Fariña, R. A. (2022). "Changes in form and function of the caudal tubes in Panochthus (Xenarthra; Glyptodontidae) along the Pleistocene". Historical Biology: An International Journal of Paleobiology. 34 (12): 2265–2272. Bibcode:2022HBio...34.2265Z. doi:10.1080/08912963.2021.2012767. S2CID 245186500.
  397. ^ Barasoain, D.; González Ruiz, L. R.; Tomassini, R. L.; Zurita, A. E.; Contreras, V. H.; Montalvo, C. I. (2021). "First phylogenetic analysis of the Miocene armadillo Vetelia reveals novel affinities with Tolypeutinae". Acta Palaeontologica Polonica. 66 (Supplement to 3): S31–S46. doi:10.4202/app.00829.2020. hdl:11336/136645. S2CID 236687120.
  398. ^ McAfee, R. K.; Beery, S. M.; Rimoli, R.; Almonte, J.; Lehman, P.; Cooke, S. B. (2021). "New species of the ground sloth Parocnus from the late Pleistocene-early Holocene of Hispaniola". Vertebrate Anatomy Morphology Palaeontology. 9 (1): 52–82. doi:10.18435/vamp29369.
  399. ^ Pujos, F.; Ciancio, M. R.; Forasiepi, A. M.; Pujos, M.; Candela, A. M.; Vera, B.; Reguero, M. A.; Combina, A. M.; Cerdeño, E. (2021). "The late Oligocene xenarthran fauna of Quebrada Fiera (Mendoza, Argentina) and its implications for sloth origins and the diversity of Palaeogene cingulates". Papers in Palaeontology. 7 (3): 1613–1656. Bibcode:2021PPal....7.1613P. doi:10.1002/spp2.1356. S2CID 233608784.
  400. ^ Valerio, A. L.; Laurito, C. L.; McDonald, H. G.; Rincón, A. D. (2021). "Perezosos Megalonychidos del Hemphilliano Tardío Temprano (Mioceno Tardío), Formación Curré, San Gerardo de Limoncito, Costa Rica". Revista Geológica de América Central. 66: 1–17. doi:10.15517/rgac.v66i0.48587. S2CID 249298970.
  401. ^ Viñola-Lopez, L. W.; Core Suárez, E. E.; Vélez-Juarbe, J.; Almonte Milan, J. N.; Bloch, J. I. (2021). "The oldest known record of a ground sloth (Mammalia, Xenarthra, Folivora) from Hispaniola: evolutionary and paleobiogeographical implications". Journal of Paleontology. 96 (3): 684–691. doi:10.1017/jpa.2021.109. S2CID 245401150.
  402. ^ McDonald, H. G.; Arroyo-Cabrales, J.; Alarcón-Durán, I.; Espinosa-Martínez, D. V. (2021). "First record of Meizonyx salvadorensis (Mammalia: Xenarthra: Pilosa) from the late Pleistocene of Mexico and its evolutionary implications". Journal of Systematic Palaeontology. 18 (22): 1829–1851. doi:10.1080/14772019.2020.1842816. S2CID 231636912.
  403. ^ Amaral, R. V.; Carvalho, L. B.; Azevedo, S. A. K.; Delcourt, R. (2021). "The first evidence of pituitary gland tumor in ground sloth Valgipes bucklandi Lund, 1839". The Anatomical Record. 305 (6): 1394–1401. doi:10.1002/ar.24786. PMID 34591370. S2CID 238228542.
  404. ^ Boscaini, A.; Toledo, N.; Mamani Quispe, B.; Andrade Flores, R.; Fernández-Monescillo, M.; Marivaux, L.; Antoine, P.-O.; Münch, P.; Gaudin, T. J.; Pujos, F. (2021). "Postcranial anatomy of the extinct terrestrial sloth Simomylodon uccasamamensis (Xenarthra, Mylodontidae) from the Pliocene of the Bolivian Altiplano, and its evolutionary implications" (PDF). Papers in Palaeontology. 7 (3): 1557–1583. Bibcode:2021PPal....7.1557B. doi:10.1002/spp2.1353. S2CID 234006216.
  405. ^ Tejada, J. V.; Flynn, J. J.; MacPhee, R.; O'Connell, T. C.; Cerling, T. E.; Bermudez, L.; Capuñay, C.; Wallsgrove, N.; Popp, B. N. (2021). "Isotope data from amino acids indicate Darwin's ground sloth was not an herbivore". Scientific Reports. 11 (1): Article number 18944. Bibcode:2021NatSR..1118944T. doi:10.1038/s41598-021-97996-9. PMC 8494799. PMID 34615902.
  406. ^ van Geel, B.; van Leeuwen, J. F. N.; Nooren, K.; Mol, D.; den Ouden, N.; van der Knaap, P. W. O.; Seersholm, F. V.; Rey-Iglesia, A.; Lorenzen, E. D. (2021). "Diet and environment of Mylodon darwinii based on pollen of a Late-Glacial coprolite from the Mylodon Cave in southern Chile". Review of Palaeobotany and Palynology. 296: Article 104549. doi:10.1016/j.revpalbo.2021.104549.
  407. ^ Varela, L.; McDonald, H. G.; Fariña, R. (2021). "Sexual dimorphism in the fossil ground sloth Lestodon armatus (Xenarthra, Folivora)". Historical Biology: An International Journal of Paleobiology. 34 (3): 525–537. doi:10.1080/08912963.2021.1933470. S2CID 236315139.
  408. ^ Gaudin, T. J.; Broome, J. (2021). "Isolated petrosal of the extinct sloth Glossotherium tropicorum (Xenarthra, Folivora, Mylodontidae) from the island of Trinidad" (PDF). Bulletin of the Florida Museum of Natural History. 58 (3): 51–64.
  409. ^ Lobato, Carolina; Varela, Luciano; Tambusso, P. Sebastián; Miño-Boilini, Ángel R.; Clavijo, Lucía; Fariña, Richard A. (2021-11-10). "Presence of the ground sloth Valgipes bucklandi (Xenarthra, Folivora, Scelidotheriinae) in southern Uruguay during the Late Pleistocene: Ecological and biogeographical implications". Quaternary International. 601: 104–115. Bibcode:2021QuInt.601..104L. doi:10.1016/j.quaint.2021.06.011. ISSN 1040-6182.
  410. ^ Lopatin, A. V.; Averianov, A. O. (2021). "First Apatemyid Mammal from Central Asia". Journal of Mammalian Evolution. 29: 129–135. doi:10.1007/s10914-021-09574-5. S2CID 244226624.
  411. ^ Gheerbrant, E.; Teodori, D. (2021). "An enigmatic specialized new eutherian mammal from the Late Cretaceous of Western Europe (Northern Pyrenees)". Comptes Rendus Palevol. 20 (13): 207–223. doi:10.5852/cr-palevol2021v20a13. S2CID 233702548.
  412. ^ a b c Atteberry, M. R.; Eberle, J. J. (2021). "New earliest Paleocene (Puercan) periptychid 'condylarths' from the Great Divide Basin, Wyoming, USA". Journal of Systematic Palaeontology. 19 (8): 565–593. Bibcode:2021JSPal..19..565A. doi:10.1080/14772019.2021.1924301. S2CID 237402212.
  413. ^ Montellano-Ballesteros, M.; Fox, R. C.; Scott, C. S. (2021). "A new, "dwarfed" species of the phenacodontid "condylarth" Ectocion from the late Paleocene of Alberta, Canada, and its implications". Canadian Journal of Earth Sciences. 58 (11): 1155–1169. Bibcode:2021CaJES..58.1155M. doi:10.1139/cjes-2019-0234. hdl:1807/107869. S2CID 239992495.
  414. ^ Bai, B.; Wang, Y.-Q.; Zhang, X.-Y.; Meng, J. (2021). "A new species of the "condylarth" Hyopsodus from the middle Eocene of the Erlian Basin, Inner Mongolia, China, and its biostratigraphic implications". Acta Palaeontologica Polonica. 66 (4): 767–777. doi:10.4202/app.00908.2021. S2CID 244887146.
  415. ^ a b c Korth, W. W.; Kihm, A. J.; Schumaker, K. K. (2021). "Insectivorans from the Medicine Pole Hills local fauna (Chadronian) of Bowman County, North Dakota". Paludicola. 13 (2): 85–105.
  416. ^ Wilson Mantilla, G. P.; Chester, S. G. B.; Clemens, W. A.; Moore, J. R.; Sprain, C. J.; Hovatter, B. T.; Mitchell, W. S.; Mans, W. W.; Mundil, R.; Renne, P. R. (2021). "Earliest Palaeocene purgatoriids and the initial radiation of stem primates". Royal Society Open Science. 8 (2): Article ID 210050. Bibcode:2021RSOS....810050W. doi:10.1098/rsos.210050. PMC 8074693. PMID 33972886.
  417. ^ Shelley, S. L.; Bertrand, O. C.; Brusatte, S. L.; Williamson, T. E. (2021). "Petrosal Anatomy of the Paleocene Eutherian Mammal Deltatherium fundaminis (Cope, 1881)". Journal of Mammalian Evolution. 28 (4): 1161–1180. doi:10.1007/s10914-021-09568-3. PMC 8406390. PMID 34483638.
  418. ^ Avilla, L. S.; Mothé, D. (2021). "Out of Africa: A New Afrotheria Lineage Rises From Extinct South American Mammals". Frontiers in Ecology and Evolution. 9: Article 654302. doi:10.3389/fevo.2021.654302.
  419. ^ Kramarz, A. G.; Macphee, R. D. E. (2022). "Did some extinct South American native ungulates arise from an afrothere ancestor? A critical appraisal of Avilla and Mothé's (2021) Sudamericungulata – Panameridiungulata hypothesis". Journal of Mammalian Evolution. 30: 67–77. doi:10.1007/s10914-022-09633-5. S2CID 253433775.
  420. ^ Kramarz, A. G.; Bond, M.; MacPhee, R. D. E. (2021). "On the alleged perissodactyl affinities of the "condylarth" Escribania chubutensis and other endemic South American ungulate-like placentals". Journal of Vertebrate Paleontology. 41 (4): e1986716. Bibcode:2021JVPal..41E6716K. doi:10.1080/02724634.2021.1986716. S2CID 244055434.
  421. ^ Croft, D. A.; Lorente, M. (2021). "No evidence for parallel evolution of cursorial limb adaptations among Neogene South American native ungulates (SANUs)". PLOS ONE. 16 (8): e0256371. Bibcode:2021PLoSO..1656371C. doi:10.1371/journal.pone.0256371. PMC 8370646. PMID 34403434.
  422. ^ MacPhee, R. D. E.; Hernández Del Pino, S.; Kramarz, A.; Forasiepi, A. M.; Bond, M.; Sulser, R. B. (2021). "Cranial morphology and phylogenetic relationships of Trigonostylops wortmani, an Eocene South American native ungulate". Bulletin of the American Museum of Natural History. 449: 1–183. doi:10.1206/0003-0090.449.1.1. hdl:2246/7264. S2CID 233301560.
  423. ^ Wolniewicz, A. S.; Fostowicz-Frelik, Ł. (2021). "CT-Informed Skull Osteology of Palaeolagus haydeni (Mammalia: Lagomorpha) and Its Bearing on the Reconstruction of the Early Lagomorph Body Plan". Frontiers in Ecology and Evolution. 9: Article 634757. doi:10.3389/fevo.2021.634757.
  424. ^ Ruf, I.; Meng, J.; Fostowicz-Frelik, Ł. (2021). "Anatomy of the Nasal and Auditory Regions of the Fossil Lagomorph Palaeolagus haydeni: Systematic and Evolutionary Implications". Frontiers in Ecology and Evolution. 9: Article 636110. doi:10.3389/fevo.2021.636110.
  425. ^ Silcox, M. T.; Selig, K. R.; Bown, T. M.; Chew, A. E.; Rose, K. D. (2021). "Cladogenesis and replacement in the fossil record of Microsyopidae (?Primates) from the southern Bighorn Basin, Wyoming". Biology Letters. 17 (2): Article ID 20200824. doi:10.1098/rsbl.2020.0824. PMC 8086977. PMID 33563133.
  426. ^ Selig, K. R.; Chew, A. E.; Silcox, M. T. (2021). "Dietary shifts in a group of early Eocene euarchontans (Microsyopidae) in association with climatic change". Palaeontology. 64 (5): 609–628. Bibcode:2021Palgy..64..609S. doi:10.1111/pala.12544. S2CID 237788962.
  427. ^ Selig, K. R.; Silcox, M. T. (2021). "The largest and earliest known sample of dental caries in an extinct mammal (Mammalia, Euarchonta, Microsyops latidens) and its ecological implications". Scientific Reports. 11 (1): Article number 15920. Bibcode:2021NatSR..1115920S. doi:10.1038/s41598-021-95330-x. PMC 8429469. PMID 34504127.
  428. ^ Boyer, D. M.; Schaeffer, L. M.; Beard, K. C. (2021). "New dentaries of Chiromyoides (Primatomorpha, Plesiadapidae) and a reassessment of the "mammalian woodpecker" ecological niche". Geobios. 66–67: 77–102. Bibcode:2021Geobi..66...77B. doi:10.1016/j.geobios.2021.03.002. S2CID 234818555.
  429. ^ Phillips, M. J.; Shazwani Zakaria, S. (2021). "Enhancing mitogenomic phylogeny and resolving the relationships of extinct megafaunal placental mammals". Molecular Phylogenetics and Evolution. 158: Article 107082. doi:10.1016/j.ympev.2021.107082. PMID 33482383. S2CID 231689281.
  430. ^ Kocsis, L.; Ulianov, A.; Mouflih, M.; Khaldoune, F.; Gheerbrant, E. (2021). "Geochemical investigation of the taphonomy, stratigraphy, and palaeoecology of the mammals from the Ouled Abdoun Basin (Paleocene-Eocene of Morocco)" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 577: Article 110523. Bibcode:2021PPP...57710523K. doi:10.1016/j.palaeo.2021.110523.
  431. ^ Christison, B. E.; Gaidies, F.; Pineda-Munoz, S.; Evans, A. R.; Gilbert, M. A.; Fraser, D. (2021). "Dietary niches of creodonts and carnivorans of the late Eocene Cypress Hills Formation". Journal of Mammalogy. 103 (1): 2–17. doi:10.1093/jmammal/gyab123. PMC 8789764. PMID 35087328.
  432. ^ de Vries, D.; Heritage, S.; Borths, M. R.; Sallam, H. M.; Seiffert, E. R. (2021). "Widespread loss of mammalian lineage and dietary diversity in the early Oligocene of Afro-Arabia". Communications Biology. 4 (1): Article number 1172. doi:10.1038/s42003-021-02707-9. PMC 8497553. PMID 34621013.
  433. ^ Campbell, K. E.; O'Sullivan, P. B.; Fleagle, J. G.; de Vries, D.; Seiffert, E. R. (2021). "An Early Oligocene age for the oldest known monkeys and rodents of South America". Proceedings of the National Academy of Sciences of the United States of America. 118 (37): e2105956118. Bibcode:2021PNAS..11805956C. doi:10.1073/pnas.2105956118. PMC 8449332. PMID 34493667.
  434. ^ Blanco, F.; Calatayud, J.; Martín-Perea, D. M.; Domingo, M. S.; Menéndez, I.; Müller, J.; Hernández Fernández, M.; Cantalapiedra, J. L. (2021). "Punctuated ecological equilibrium in mammal communities over evolutionary time scales". Science. 372 (6539): 300–303. Bibcode:2021Sci...372..300B. doi:10.1126/science.abd5110. PMID 33859037. S2CID 233245055.
  435. ^ Dewaele, L.; Gol'din, P.; Marx, F. G.; Lambert, O.; Laurin, M.; Obadă, T.; de Buffrénil, V. (2021). "Hypersalinity drives convergent bone mass increases in Miocene marine mammals from the Paratethys" (PDF). Current Biology. 32 (1): 248–255.e2. doi:10.1016/j.cub.2021.10.065. PMID 34813730. S2CID 244485732.
  436. ^ Böhme, M.; Kampouridis, P.; Markov, G. N.; Hristova, L.; Spassov, N. (2021). "Large mammals (Proboscidea, Perissodactyla) from the late Miocene Burel Basin in West Bulgaria". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 302 (2): 117–129. doi:10.1127/njgpa/2021/1022. S2CID 243927661.
  437. ^ Böhme, M.; Spassov, N.; Majidifard, M. R.; Gärtner, A.; Kirscher, U.; Marks, M.; Dietzel, C.; Uhlig, G.; El Atfy, H.; Begun, D. R.; Winklhofer, M. (2021). "Neogene hyperaridity in Arabia drove the directions of mammalian dispersal between Africa and Eurasia". Communications Earth & Environment. 2 (1): Article number 85. Bibcode:2021ComEE...2...85B. doi:10.1038/s43247-021-00158-y.
  438. ^ Lihoreau, F.; Sarr, R.; Chardon, D.; Boisserie, J.-R.; Lebrun, R.; Adnet, S.; Martin, J. E.; Pallas, L.; Sambou, B.; Tabuce, R.; Thiam, M. M.; Hautier, L. (2021). "A fossil terrestrial fauna from Tobène (Senegal) provides a unique early Pliocene window in western Africa" (PDF). Gondwana Research. 99: 21–35. Bibcode:2021GondR..99...21L. doi:10.1016/j.gr.2021.06.013.
  439. ^ Pardi, M. I.; DeSantis, L. R. G. (2021). "Dietary plasticity of North American herbivores: a synthesis of stable isotope data over the past 7 million years". Proceedings of the Royal Society B: Biological Sciences. 288 (1948): Article ID 20210121. doi:10.1098/rspb.2021.0121. PMC 8059550. PMID 33849317.
  440. ^ Arriaza, M. C.; Aramendi, J.; Maté-González, M. Á.; Yravedra, J.; Stratford, D. (2021). "The hunted or the scavenged? Australopith accumulation by brown hyenas at Sterkfontein (South Africa)". Quaternary Science Reviews. 273: Article 107252. Bibcode:2021QSRv..27307252A. doi:10.1016/j.quascirev.2021.107252. hdl:10366/155638. S2CID 240482971.
  441. ^ Bartolini-Lucenti, S.; Cirilli, O.; Pandolfi, L.; Bernor, R. L.; Bukhsianidze, M.; Carotenuto, F.; Lordkipanidze, D.; Tsikaridze, N.; Rook, L. (2021). "Zoogeographic significance of Dmanisi large mammal assemblage". Journal of Human Evolution. 163: Article 103125. doi:10.1016/j.jhevol.2021.103125. PMID 34954399. S2CID 245459037.
  442. ^ Dembitzer, J.; Barkai, R.; Ben-Dor, M.; Meiri, S. (2021). "Levantine overkill: 1.5 million years of hunting down the body size distribution". Quaternary Science Reviews. 276: Article 107316. doi:10.1016/j.quascirev.2021.107316. S2CID 245236379.
  443. ^ Orbach, M.; Amos, L.; Yeshurun, R. (2022). "Human prey choice refutes "Levantine overkill": Comment on Dembitzer et al. (2022)". Quaternary Science Reviews. 285: Article 107468. Bibcode:2022QSRv..28507468O. doi:10.1016/j.quascirev.2022.107468. S2CID 247900447.
  444. ^ Dembitzer, J.; Barkai, R.; Ben-Dor, M.; Meiri, S. (2022). "Is it all about elephants? Explaining prey size decline in the Paleolithic Southern Levant". Quaternary Science Reviews. 285: Article 107476. Bibcode:2022QSRv..28507476D. doi:10.1016/j.quascirev.2022.107476. S2CID 248054925.
  445. ^ Mitchell, K. J.; Bover, P.; Salis, A. T.; Mudge, C.; Heiniger, H.; Thompson, M.; Hockett, B.; Weyrich, L. S.; Cooper, A.; Meachen, J. A. (2023). "Evidence for Pleistocene gene flow through the ice-free corridor from extinct horses and camels from Natural Trap Cave, Wyoming". Quaternary International. 647–648: 71–80. Bibcode:2023QuInt.647...71M. doi:10.1016/j.quaint.2021.11.017. S2CID 244706923.
  446. ^ Kelly, A.; Miller, J. H.; Wooller, M. J.; Seaton, C. T.; Druckenmiller, P.; DeSantis, L. (2021). "Dietary paleoecology of bison and horses on the mammoth steppe of eastern Beringia based on dental microwear and mesowear analyses". Palaeogeography, Palaeoclimatology, Palaeoecology. 572: Article 110394. Bibcode:2021PPP...57210394K. doi:10.1016/j.palaeo.2021.110394. S2CID 234839510.
  447. ^ Stewart, M.; Carleton, W. C.; Groucutt, H. S. (2021). "Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America". Nature Communications. 12 (1): Article number 965. Bibcode:2021NatCo..12..965S. doi:10.1038/s41467-021-21201-8. PMC 7886903. PMID 33594059.
  448. ^ Wang, Y.; Pedersen, M. W.; Alsos, I. G.; De Sanctis, B.; Racimo, F.; Prohaska, A.; Coissac, E.; Owens, H. L.; Merkel, M. K. F.; Fernandez-Guerra, A.; Rouillard, A.; Lammers, Y.; Alberti, A.; Denoeud, F.; Money, D.; Ruter, A. H.; McColl, H.; Larsen, N. K.; Cherezova, A. A.; Edwards, M. E.; Fedorov, G. B.; Haile, J.; Orlando, L.; Vinner, L.; Korneliussen, T. S.; Beilman, D. W.; Bjørk, A. A.; Cao, J.; Dockter, C.; Esdale, J.; Gusarova, G.; Kjeldsen, K. K.; Mangerud, J.; Rasic, J. T.; Skadhauge, B.; Svendsen, J. I.; Tikhonov, A.; Wincker, P.; Xing, Y.; Zhang, Y.; Froese, D. G.; Rahbek, C.; Bravo Nogues, D.; Holden, P. B.; Edwards, N. R.; Durbin, R.; Meltzer, D. J.; Kjær, K. H.; Möller, P.; Willerslev, E. (2021). "Late Quaternary dynamics of Arctic biota from ancient environmental genomics". Nature. 600 (7887): 86–92. Bibcode:2021Natur.600...86W. doi:10.1038/s41586-021-04016-x. PMC 8636272. PMID 34671161.
  449. ^ Miller, J. H.; Simpson, C. (2022). "When did mammoths go extinct?". Nature. 612 (7938): E1–E3. Bibcode:2022Natur.612E...1M. doi:10.1038/s41586-022-05416-3. PMC 9712083. PMID 36450914.
  450. ^ Wang, Y.; Prohaska, A.; Dong, H.; Alberti, A.; Alsos, I. G.; Beilman, D. W.; Bjørk, A. A.; Cao, J.; Cherezova, A. A.; Coissac, E.; De Sanctis, B.; Denoeud, F.; Dockter, C.; Durbin, R.; Edwards, M. E.; Edwards, N. R.; Esdale, J.; Fedorov, G. B.; Fernandez-Guerra, A.; Froese, D. G.; Gusarova, G.; Haile, J.; Holden, P. B.; Kjeldsen, K. K.; Kjær, K. H.; Korneliussen, T. S.; Lammers, Y.; Larsen, N. K.; Macleod, R.; Mangerud, J.; McColl, H.; Merkel, M. K. F.; Money, D.; Möller, P.; Nogués-Bravo, D.; Orlando, L.; Owens, H. L.; Pedersen, M. W.; Racimo, F.; Rahbek, C.; Rasic, J. T.; Rouillard, A.; Ruter, A. H.; Skadhauge, B.; Svendsen, J. I.; Tikhonov, A.; Vinner, L.; Wincker, P.; Xing, Y.; Zhang, Y.; Meltzer, D. J.; Willerslev, E. (2022). "Reply to: When did mammoths go extinct?". Nature. 612 (7938): E4–E6. Bibcode:2022Natur.612E...4W. doi:10.1038/s41586-022-05417-2. PMC 9712097. PMID 36450908.
  451. ^ Murchie, T. J.; Monteath, A. J.; Mahony, M. E.; Long, G. S.; Cocker, S.; Sadoway, T.; Karpinski, E.; Zazula, G.; MacPhee, R. D. E.; Froese, D.; Poinar, H. N. (2021). "Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA". Nature Communications. 12 (1): Article number 7120. Bibcode:2021NatCo..12.7120M. doi:10.1038/s41467-021-27439-6. PMC 8654998. PMID 34880234.
  452. ^ Prates, L.; Perez, S. I. (2021). "Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population". Nature Communications. 12 (1): Article number 2175. Bibcode:2021NatCo..12.2175P. doi:10.1038/s41467-021-22506-4. PMC 8041891. PMID 33846353.
  453. ^ Araújo, T.; Machado, H.; Mothé, D.; Avilla, L. S. (2021). "Species distribution modeling reveals the ecological niche of extinct megafauna from South America". Quaternary Research. 104: 151–158. Bibcode:2021QuRes.104..151A. doi:10.1017/qua.2021.24. S2CID 236554327.
  454. ^ Zavala, E. I.; Jacobs, Z.; Vernot, B.; Shunkov, M. V.; Kozlikin, M. B.; Derevianko, A. P.; Essel, E.; de Fillipo, C.; Nagel, S.; Richter, J.; Romagné, F.; Schmidt, A.; Li, B.; O'Gorman, K.; Slon, V.; Kelso, J.; Pääbo, S.; Roberts, R. G.; Meyer, M. (2021). "Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave". Nature. 595 (7867): 399–403. Bibcode:2021Natur.595..399Z. doi:10.1038/s41586-021-03675-0. PMC 8277575. PMID 34163072.
  455. ^ Gelabert, P.; Sawyer, S.; Bergström, A.; Margaryan, A.; Collin, T. C.; Meshveliani, T.; Belfer-Cohen, A.; Lordkipanidze, D.; Jakeli, N.; Matskevich, Z.; Bar-Oz, G.; Fernandes, D. M.; Cheronet, O.; Özdoğan, K. T.; Oberreiter, V.; Feeney, R. N. M.; Stahlschmidt, M. C.; Skoglund, P.; Pinhasi, R. (2021). "Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment". Current Biology. 31 (16): 3564–3574.e9. doi:10.1016/j.cub.2021.06.023. PMC 8409484. PMID 34256019. S2CID 235802614.
  456. ^ Polling, M.; ter Schure, A. T. M.; van Geel, B.; van Bokhoven, T.; Boessenkool, S.; MacKay, G.; Langeveld, B. W.; Ariza, M.; van der Plicht, H.; Protopopov, A. V.; Tikhonov, A.; de Boer, H.; Gravendeel, B. (2021). "Multiproxy analysis of permafrost preserved faeces provides an unprecedented insight into the diets and habitats of extinct and extant megafauna". Quaternary Science Reviews. 267: Article 107084. Bibcode:2021QSRv..26707084P. doi:10.1016/j.quascirev.2021.107084. hdl:2066/237380.
  457. ^ a b c d Travouillon, K. J.; Beck, R. M. D.; Case, J. A. (2021). "Upper Oligocene–lower-Middle Miocene peramelemorphians from the Etadunna, Namba and Wipajiri formations of South Australia". Alcheringa: An Australasian Journal of Palaeontology. 45 (1): 109–125. Bibcode:2021Alch...45..109T. doi:10.1080/03115518.2021.1921274. S2CID 235748135.
  458. ^ a b c Abello, M. A.; Martin, G. M.; Cardoso, Y. (2021). "Review of the extinct 'shrew-opossums' (Marsupialia: Caenolestidae), with descriptions of two new genera and three new species from the Early Miocene of southern South America". Zoological Journal of the Linnean Society. 193 (2): 464–498. doi:10.1093/zoolinnean/zlaa165.
  459. ^ Oliveira, É. V.; Carneiro, L. M.; Goin, F. J. (2021). "A new derorhynchid (Mammalia, Metatheria) from the early Eocene Itaboraí fauna of Brazil with comments on its affinities". Anais da Academia Brasileira de Ciências. 93 (Suppl. 2): e20201554. doi:10.1590/0001-3765202120201554. PMID 34378646. S2CID 236977058.
  460. ^ Cohen, J. E.; Davis, B. M.; Cifelli, R. L. (2021). "Scalaridelphys Nom. Nov. A New Replacement Name for Scalaria Cohen et al., 2020 (Marsupialiformes, Aquiladelphidae)". Journal of Vertebrate Paleontology. 40 (6): e1877721. doi:10.1080/02724634.2021.1877721. S2CID 233906635.
  461. ^ Fabre, A.-C.; Dowling, C.; Portela Miguez, R.; Fernandez, V.; Noirault, E.; Goswami, A. (2021). "Functional constraints during development limit jaw shape evolution in marsupials". Proceedings of the Royal Society B: Biological Sciences. 288 (1949): Article ID 20210319. doi:10.1098/rspb.2021.0319. PMC 8079998. PMID 33906406.
  462. ^ Crespo, V. D.; Goin, F. J. (2021). "Taxonomy and affinities of African Cenozoic metatherians". Spanish Journal of Palaeontology. 36 (2). doi:10.7203/sjp.36.2.20974. hdl:11336/165007. S2CID 237387495.
  463. ^ Castro, M. C.; Dahur, M. J.; Ferreira, G. S. (2021). "Amazonia as the Origin and Diversification Area of Didelphidae (Mammalia: Metatheria), and a Review of the Fossil Record of the Clade". Journal of Mammalian Evolution. 28 (3): 583–598. doi:10.1007/s10914-021-09548-7.
  464. ^ Richards, H. L.; Bishop, P. J.; Hocking, D. P.; Adams, J. W.; Evans, A. R. (2021). "Low elbow mobility indicates unique forelimb posture and function in a giant extinct marsupial". Journal of Anatomy. 238 (6): 1425–1441. doi:10.1111/joa.13389. PMC 8128769. PMID 33533053.
  465. ^ Warburton, N. M.; Yates, A. M. (2021). "Functional morphology of Wakaleo postcrania from the middle to late Miocene of central Australia reveals new insights in the evolution of marsupial hypercarnivores". Journal of Vertebrate Paleontology. 40 (6): e1878203. doi:10.1080/02724634.2021.1878203. S2CID 233793061.
  466. ^ White, J. M.; DeSantis, L. R. G.; Evans, A. R.; Wilson, L. A. B.; McCurry, M. R. (2021). "A panda-like diprotodontid? Assessing the diet of Hulitherium tomasettii using dental complexity (Orientation Patch Count Rotated) and dental microwear texture analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 583: Article 110675. Bibcode:2021PPP...58310675W. doi:10.1016/j.palaeo.2021.110675. S2CID 244242013.
  467. ^ Price, G. J.; Fitzsimmons, K. E.; Nguyen, A. D.; Zhao, J.; Feng, Y.; Sobbe, I. H.; Godthelp, H.; Archer, M.; Hand, S. J. (2021). "New ages of the world's largest-ever marsupial: Diprotodon optatum from Pleistocene Australia". Quaternary International. 603: 64–73. Bibcode:2021QuInt.603...64P. doi:10.1016/j.quaint.2021.06.013.
  468. ^ Warburton, N. M.; Prideaux, G. J. (2021). "The skeleton of Congruus kitcheneri, a semiarboreal kangaroo from the Pleistocene of southern Australia". Royal Society Open Science. 8 (3): Article ID 202216. Bibcode:2021RSOS....802216W. doi:10.1098/rsos.202216. PMC 8074921. PMID 33959368.
  469. ^ Jones, B.; Martín-Serra, A.; Rayfield, E. J.; Janis, C. M. (2021). "Distal Humeral Morphology Indicates Locomotory Divergence in Extinct Giant Kangaroos". Journal of Mammalian Evolution. 29: 27–41. doi:10.1007/s10914-021-09576-3.
  470. ^ Scott, C. S. (2021). "First mammal from the Willow Creek Formation: a new early Paleocene ptilodontid (Mammalia, Multituberculata) from near Calgary, Alberta, Canada". Canadian Journal of Earth Sciences. 58 (6): 505–518. Bibcode:2021CaJES..58..505S. doi:10.1139/cjes-2020-0151. S2CID 236608393.
  471. ^ a b c Martin, T.; Goin, F. J.; Schultz, J. A.; Gelfo, J. N. (2021). "Early Late Cretaceous mammals from southern Patagonia (Santa Cruz province, Argentina)". Cretaceous Research. 133: Article 105127. doi:10.1016/j.cretres.2021.105127. S2CID 245549530.
  472. ^ Martin, T.; Averianov, A. O.; Schultz, J. A.; Schwermann, A. H.; Wings, O. (2021). "A derived dryolestid mammal indicates possible insular endemism in the Late Jurassic of Germany". The Science of Nature. 108 (3): Article number 23. Bibcode:2021SciNa.108...23M. doi:10.1007/s00114-021-01719-z. PMC 8126546. PMID 33993371.
  473. ^ Mao, F.; Zhang, C.; Liu, C.; Meng, J. (2021). "Fossoriality and evolutionary development in two Cretaceous mammaliamorphs". Nature. 592 (7855): 577–582. Bibcode:2021Natur.592..577M. doi:10.1038/s41586-021-03433-2. PMID 33828300. S2CID 233183060.
  474. ^ Smith, T.; Codrea, V. A.; Devillet, G.; Solomon, A. A. (2021). "A New Mammal Skull from the Late Cretaceous of Romania and Phylogenetic Affinities of Kogaionid Multituberculates". Journal of Mammalian Evolution. 29: 1–26. doi:10.1007/s10914-021-09564-7. S2CID 244194193.
  475. ^ Lopatin, A. V.; Averianov, A. O. (2021). "Multituberculata from the Early Cretaceous of Mongolia". Paleontological Journal. 55 (11): 1275–1317. Bibcode:2021PalJ...55.1275L. doi:10.1134/S0031030121110058. S2CID 245540080.
  476. ^ Martinelli, A. G.; Soto-Acuña, S.; Goin, F. J.; Kaluza, J.; Bostelmann, J. E.; Fonseca, P. H. M.; Reguero, M. A.; Leppe, M.; Vargas, A. O. (2021). "New cladotherian mammal from southern Chile and the evolution of mesungulatid meridiolestidans at the dusk of the Mesozoic era". Scientific Reports. 11 (1): Article number 7594. Bibcode:2021NatSR..11.7594M. doi:10.1038/s41598-021-87245-4. PMC 8027844. PMID 33828193.
  477. ^ Hu, J.; Han, F. (2021). "A new multituberculate, Yubaatar qianzhouensis sp. nov.: the first Late Cretaceous mammal from Ganzhou Basin, Jiangxi Province". Acta Palaeontologica Sinica. 60 (4): 565–579. doi:10.19800/j.cnki.aps.2020057.
  478. ^ Davis, B. M.; Cifelli, R. L.; Rougier, G. W. (2021). "Mammalian Petrosals from the Upper Jurassic Morrison Formation (Utah, USA) Reveal Non-canonical Evolution of Middle and Inner Ear Characters". Journal of Mammalian Evolution. 28 (4): 1027–1049. doi:10.1007/s10914-021-09586-1. S2CID 245212060.
  479. ^ Lopatin, A. V. (2021). "Mammalian Tooth Marks on the Bone of Eutriconodontan Gobiconodon borissiaki (Mammalia, Gobiconodontidae) from the Lower Cretaceous of Mongolia". Doklady Earth Sciences. 501 (supplement issue 1): S18–S21. Bibcode:2021DokES.501S..18L. doi:10.1134/S1028334X22010044. S2CID 247585483.
  480. ^ Devillet, G.; Sun, Y.; Li, H.; Smith, T. (2021). "A new partial skeleton of Kryptobaatar from the Upper Cretaceous of Bayan Mandahu (Inner Mongolia, China) relaunch the question about variability in djadochtatherioid multituberculate mammals". Cretaceous Research. 130: Article 105041. doi:10.1016/j.cretres.2021.105041. S2CID 241890030.
  481. ^ Krause, D. W.; Hoffmann, S.; Lyson, T. R.; Dougan, L. G.; Petermann, H.; Tecza, A.; Chester, S. G. B.; Miller, I. M. (2021). "New Skull Material of Taeniolabis taoensis (Multituberculata, Taeniolabididae) from the Early Paleocene (Danian) of the Denver Basin, Colorado". Journal of Mammalian Evolution. 28 (4): 1083–1143. doi:10.1007/s10914-021-09584-3. PMC 8667543. PMID 34924738.
  482. ^ Rougier, G. W.; Turazzinni, G. F.; Cardozo, M. S.; Harper, T.; Lires, A. I.; Canessa, L. A. (2021). "New Specimens of Reigitherium bunodontum from the Late Cretaceous La Colonia Formation, Patagonia, Argentina and Meridiolestidan Diversity in South America". Journal of Mammalian Evolution. 28 (4): 1051–1081. doi:10.1007/s10914-021-09585-2. S2CID 245214278.
  483. ^ Smaers, J. B.; Rothman, R. S.; Hudson, D. R.; Balanoff, A. M.; Beatty, B.; Dechmann, D. K. N.; de Vries, D.; Dunn, J. C.; Fleagle, J. G.; Gilbert, C. C.; Goswami, A.; Iwaniuk, A. N.; Jungers, W. L.; Kerney, M.; Ksepka, D. T.; Manger, P. R.; Mongle, C. S.; Rohlf, F. J.; Smith, N. A.; Soligo, C.; Weisbecker, V.; Safi, K. (2021). "The evolution of mammalian brain size". Science Advances. 7 (18): eabe2101. Bibcode:2021SciA....7.2101S. doi:10.1126/sciadv.abe2101. PMC 8081360. PMID 33910907.
  484. ^ Brocklehurst, N.; Panciroli, E.; Benevento, G. L.; Benson, R. B. J. (2021). "Mammaliaform extinctions as a driver of the morphological radiation of Cenozoic mammals". Current Biology. 31 (13): 2955–2963.e4. doi:10.1016/j.cub.2021.04.044. PMID 34004143. S2CID 234782605.
  485. ^ Morales-García, N. M.; Gill, P. G.; Janis, C. M.; Rayfield, E. J. (2021). "Jaw shape and mechanical advantage are indicative of diet in Mesozoic mammals". Communications Biology. 4 (1): Article number 242. doi:10.1038/s42003-021-01757-3. PMC 7902851. PMID 33623117.
  486. ^ Upham, N. S.; Esselstyn, J. A.; Jetz, W. (2021). "Molecules and fossils tell distinct yet complementary stories of mammal diversification". Current Biology. 31 (19): 4195–4206.e3. doi:10.1016/j.cub.2021.07.012. PMC 9090300. PMID 34329589. S2CID 236506883.
  487. ^ Álvarez-Carretero, S.; Tamuri, A. U.; Battini, M.; Nascimento, F. F.; Carlisle, E.; Asher, R. J.; Yang, Z.; Donoghue, P. C. J.; dos Reis, M. (2021). "A Species-Level Timeline of Mammal Evolution Integrating Phylogenomic Data". Nature. 602 (7896): 263–267. doi:10.1038/s41586-021-04341-1. hdl:1983/de841853-d57b-40d9-876f-9bfcf7253f12. PMID 34937052. S2CID 245438816.
  488. ^ Hughes, J. J.; Berv, J. S.; Chester, S. G. B.; Sargis, E. J.; Field, D. J. (2021). "Ecological selectivity and the evolution of mammalian substrate preference across the K–Pg boundary". Ecology and Evolution. 11 (21): 14540–14554. Bibcode:2021EcoEv..1114540H. doi:10.1002/ece3.8114. PMC 8571592. PMID 34765124.
  489. ^ Shelley, S. L.; Brusatte, S. L.; Williamson, T. E. (2021). "Quantitative assessment of tarsal morphology illuminates locomotor behaviour in Palaeocene mammals following the end-Cretaceous mass extinction". Proceedings of the Royal Society B: Biological Sciences. 288 (1950): Article ID 20210393. doi:10.1098/rspb.2021.0393. PMC 8114852. PMID 33977789.
  490. ^ Wroblewski, A. F.-J.; Gulas-Wroblewski, B. E. (2021). "Earliest evidence of marine habitat use by mammals". Scientific Reports. 11 (1): Article number 8846. Bibcode:2021NatSR..11.8846W. doi:10.1038/s41598-021-88412-3. PMC 8119712. PMID 33986320.
  491. ^ Melchionna, M.; Profico, A.; Castiglione, S.; Serio, C.; Mondanaro, A.; Modafferi, M.; Tamagnini, D.; Maiorano, L.; Raia, P.; Witmer, L. M.; Wroe, S.; Sansalone, G. (2021). "A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabre-tooth". Palaeontology. 64 (4): 573–584. doi:10.1111/pala.12542. hdl:10261/241519. S2CID 236386785.
  492. ^ Loughney, K. M.; Badgley, C.; Bahadori, A.; Holt, W. E.; Rasbury, E. T. (2021). "Tectonic influence on Cenozoic mammal richness and sedimentation history of the Basin and Range, western North America". Science Advances. 7 (45): eabh4470. Bibcode:2021SciA....7.4470L. doi:10.1126/sciadv.abh4470. PMC 8565843. PMID 34730991.
  493. ^ Žliobaitė, I.; Fortelius, M. (2021). "On calibrating the completometer for the mammalian fossil record". Paleobiology. 48: 1–11. doi:10.1017/pab.2021.22. S2CID 238686414.
  494. ^ Pineda-Munoz, S.; Wang, Y.; Lyons, S. K.; Tóth, A. B.; McGuire, J. L. (2021). "Mammal species occupy different climates following the expansion of human impacts". Proceedings of the National Academy of Sciences of the United States of America. 118 (2): e1922859118. Bibcode:2021PNAS..11822859P. doi:10.1073/pnas.1922859118. PMC 7812786. PMID 33397717.
  495. ^ Sakamoto, M. (2021). "Assessing bite force estimates in extinct mammals and archosaurs using phylogenetic predictions". Palaeontology. 64 (5): 743–753. Bibcode:2021Palgy..64..743S. doi:10.1111/pala.12567.
  496. ^ Lang, A. J.; Engler, T.; Martin, T. (2021). "Dental topographic and three-dimensional geometric morphometric analysis of carnassialization in different clades of carnivorous mammals (Dasyuromorphia, Carnivora, Hyaenodonta)". Journal of Morphology. 283 (1): 91–108. doi:10.1002/jmor.21429. hdl:20.500.11811/10981. PMID 34775616.