Jump to content

Rule of product: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
fix misplaced newlines in ref
This is a brief discussion of the Addition and multiplication principle. This is the best blog on the topic with supporting proofs.
Tags: Visual edit Mobile edit Mobile web edit
Line 40: Line 40:


*[[Combinatorial principles]]
*[[Combinatorial principles]]
*[https://drive.google.com/file/d/1_tBH14xywHclrH9eYxRsBaKY_roS-xM7/view?usp=drivesdk The fundamental principle of Counting]


== References ==
== References ==

Revision as of 19:05, 29 September 2018

The elements of the set {A, B} can combine with the elements of the set {1, 2, 3} in six different ways.

In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions.[1][2]

Examples


In this example, the rule says: multiply 3 by 2, getting 6.

The sets {A, B, C} and {X, Y} in this example are disjoint sets, but that is not necessary. The number of ways to choose a member of {A, B, C}, and then to do so again, in effect choosing an ordered pair each of whose components is in {A, B, C}, is 3 × 3 = 9.

As another example, when you decide to order pizza, you must first choose the type of crust: thin or deep dish (2 choices). Next, you choose one topping: cheese, pepperoni, or sausage (3 choices).

Using the rule of product, you know that there are 2 × 3 = 6 possible combinations of ordering a pizza.

Applications

In set theory, this multiplication principle is often taken to be the definition of the product of cardinal numbers.[1] We have

where is the Cartesian product operator. These sets need not be finite, nor is it necessary to have only finitely many factors in the product; see cardinal number.

The rule of sum is another basic counting principle. Stated simply, it is the idea that if we have a ways of doing something and b ways of doing another thing and we can not do both at the same time, then there are a + b ways to choose one of the actions.[3]

See also

References

  1. ^ a b Johnston, William, and Alex McAllister. A transition to advanced mathematics. Oxford Univ. Press, 2009. Section 5.1
  2. ^ "College Algebra Tutorial 55: Fundamental Counting Principle". Retrieved December 20, 2014.
  3. ^ Rosen, Kenneth H., ed. Handbook of discrete and combinatorial mathematics. CRC pres, 1999.