Jump to content

High-molecular-weight kininogen: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m spacing
Added the cs1 style template to denote Vancouver ("vanc") citation style, because references contain "vauthors" attribute to specify the list of authors. Altered pages. Formatted dashes. | Use this tool. Report bugs. | #UCB_Gadget
 
(35 intermediate revisions by 12 users not shown)
Line 1: Line 1:
{{cs1 config|name-list-style=vanc}}
{merge|Kininogen 1|date=November 2011}}
{{infobox protein
{{infobox protein
|Name=[[kininogen 1]]
|Name=[[kininogen 1]]
Line 20: Line 20:
}}
}}


'''High molecular weight kininogen''' ('''HMWK''' or '''HK''') is a circulating plasma protein which participates in the initiation of blood [[coagulation]], and in the generation of the vasodilator [[bradykinin]] via the [[Kallikrein-kinin system]]. HMWK is inactive until it either adheres to binding proteins beneath an endothelium disrupted by injury, thereby initiating coagulation; or it binds to intact endothelial cells or platelets for functions other than coagulation.
'''High-molecular-weight kininogen''' ('''HMWK''' or '''HK''') is a circulating plasma protein which participates in the initiation of blood [[coagulation]], and in the generation of the vasodilator [[bradykinin]] via the [[kallikrein-kinin system]]. HMWK is inactive until it either adheres to binding proteins beneath an endothelium disrupted by injury, thereby initiating coagulation; or it binds to intact endothelial cells or platelets for functions other than coagulation.


==Other names==
== Other names ==
In the past, HMWK has been called HMWK-kallikrein factor, Williams-Fitzgerald-Flaujeac factor, and FItzgerald factor - the eponyms being for people first reported to have HMWK deficiency. Its current accepted name is to contrast it with '''low''' molecular weight kininogen (LMWK) which has a similar function to HMWK in the tissue (as opposed to serum) kinin-kallikrein system.


In the past, HMWK has been called HMWK-kallikrein factor, Flaujeac factor (1975),<ref name="pmid127805">{{cite journal | vauthors = Wuepper KD, Miller DR, Lacombe MJ | title = Flaujeac trait. Deficiency of human plasma kininogen | journal = The Journal of Clinical Investigation | volume = 56 | issue = 6 | pages = 1663–72 | date = December 1975 | pmid = 127805 | pmc = 333145 | doi = 10.1172/JCI108248 }}</ref> Fitzgerald factor (1975),<ref name="pmid48123">{{cite journal | vauthors = Waldmann R, Abraham JP, Rebuck JW, Caldwell J, Saito H, Ratnoff OD | title = Fitzgerald factor: a hitherto unrecognised coagulation factor | journal = Lancet | volume = 1 | issue = 7913 | pages = 949–51 | date = April 1975 | pmid = 48123 | doi = 10.1016/s0140-6736(75)92008-5 | s2cid = 24923458 }}</ref> and Williams-Fitzgerald-Flaujeac factor, - the eponyms being for people first reported to have HMWK deficiency. Its current accepted name is to contrast it with [[low-molecular-weight kininogen|''low''-molecular-weight kininogen]] (LMWK) which has a similar function to HMWK in the tissue (as opposed to serum) kinin-kallikrein system.
==Structure and Function ==

HMWK is an alpha-globulin with six functional domains. It circulates as a single-chain 626 amino acid polypeptide . The heavy chain contains domains 1, 2, and 3; the light chain, domains 5 and 6. Domain 4 links the heavy and light chains.
== Structure and function ==

HMWK is an alpha-globulin with six functional domains. It circulates as a single-chain 626 amino acid polypeptide . The heavy chain contains domains 1, 2, and 3; the light chain, domains 5 and 6. Domain 4 links the heavy and light chains in addition to a [[disulfide bond]] between positions close to the N- and C-termini.<ref name=weisel1994/>


The domains contain the following functional sites:
The domains contain the following functional sites:
'''Domain 1''' - calcium binding
*'''Domain 1''' - calcium binding
'''Domain 2''' - cysteine protease inhibition
*'''Domain 2''' - cysteine protease inhibition
'''Domain 3''' - cysteine protease inhibition; platelet and endothelial cell binding
*'''Domain 3''' - cysteine protease inhibition; platelet and endothelial cell binding
'''Domain 4''' - bradykinin generation
*'''Domain 4''' - bradykinin generation
'''Domain 5''' - heparin and cell binding; antiangiogenic properties; binding to negatively charged surfaces
*'''Domain 5''' - heparin and cell binding; antiangiogenic properties; binding to negatively charged surfaces
'''Domain 6''' - prekallikrein and factor XI binding (amino acids 420 to 510)(histidine rich)
*'''Domain 6''' - prekallikrein and factor XI binding (amino acids 420 to 510)(histidine rich)


HMWK is one of four proteins which interact to initiate the '''contact activation pathway''' (also called the '''intrinsic pathway''') of [[coagulation]]: the other three are [[Factor XII]], [[Factor XI]] and [[prekallikrein]]. HMWK is not enzymatically active, and functions only as a cofactor for the activation of [[kallikrein]] and factor XII. It is also necessary for the activation of factor XI by factor XIIa.
HMWK is one of four proteins which interact to initiate the '''contact activation pathway''' (also called the '''intrinsic pathway''') of [[coagulation]]: the other three are [[Factor XII]], [[Factor XI]] and [[prekallikrein]]. HMWK is not enzymatically active, and functions only as a cofactor for the activation of [[kallikrein]] and factor XII. It is also necessary for the activation of factor XI by factor XIIa.


HMWK is also a precursor of [[bradykinin]];<ref name="OffermannsRosenthal2008">{{cite book|author1=Stefan Offermanns|author2=Walter Rosenthal|title=Encyclopedia of Molecular Pharmacology|url=http://books.google.com/books?;id=iwwo5gx8aX8C&pg=PA673|accessdate=11 December 2010|year=2008|publisher=Springer|isbn=978-3-540-38916-3|pages=673–}}</ref> this [[vasodilator]] is released through positive feedback by [[kallikrein]].
HMWK is also a precursor of [[bradykinin]];<ref name="OffermannsRosenthal2008">{{cite book|author1=Stefan Offermanns|author2=Walter Rosenthal|title=Encyclopedia of Molecular Pharmacology|url=https://books.google.com/books?id=iwwo5gx8aX8C&pg=PA673|access-date=11 December 2010|year=2008|publisher=Springer|isbn=978-3-540-38916-3|pages=673– }}</ref> this [[vasodilator]] is released through positive feedback by [[kallikrein]]. Cleavage by kallikein results in the liberation of two peptides, one of which is bradykinin, from HMWK's fourth domain.<ref name=weisel1994>{{cite journal|vauthors=Weisel JW, Nagaswami C, Woodhead JL, DeLa Cadena RA, Page JD, Colman RW|title=The shape of high molecular weight kininogen. Organization into structural domains, changes with activation, and interactions with prekallikrein, as determined by electron microscopy|journal=The Journal of Biological Chemistry|volume=269|issue=13|pages=10100–10106|doi=10.1016/S0021-9258(17)36995-8|doi-access=free|pmid=8144509|year=1994}}</ref>


Cleavage by kallikrein also helps HMWK to optimally function as a [[coactivator]]. The cleavage results in a change in the conformation of HMWK that may increase the accessibility of its surface binding domain, which could explain cleaved HMWK's increased affinity for negatively charged surfaces.<ref name=weisel1994/> The resulting severed light and heavy chains remain connected by the aforementioned disulfide bond near the original N- and C-termini.<ref name=weisel1994/>
HMWK is a strong inhibitor of cysteine proteinases. Responsible for this activity are domains on its heavy chain.<ref name="pmid3635411">{{cite journal |author=Higashiyama S, Ohkubo I, Ishiguro H, Kunimatsu M, Sawaki K, Sasaki M |title=Human high molecular weight kininogen as a thiol proteinase inhibitor: presence of the entire inhibition capacity in the native form of heavy chain |journal=Biochemistry |volume=25 |issue=7 |pages=1669–75 |date=April 1986 |pmid=3635411 |doi= 10.1021/bi00355a034|url=}}</ref>


HMWK is a strong inhibitor of cysteine proteinases. Responsible for this activity are domains 2 and 3 on its heavy chain.<ref name="pmid3635411">{{cite journal | vauthors = Higashiyama S, Ohkubo I, Ishiguro H, Kunimatsu M, Sawaki K, Sasaki M | title = Human high molecular weight kininogen as a thiol proteinase inhibitor: presence of the entire inhibition capacity in the native form of heavy chain | journal = Biochemistry | volume = 25 | issue = 7 | pages = 1669–75 | date = April 1986 | pmid = 3635411 | doi = 10.1021/bi00355a034 }}</ref>
==Genetics==
The gene for both LMWK and HMWK is located on the 3rd chromosome (3q27).


Cleavage of HMWK by activated factor XI abrogates HMWK's ability to act as a cofactor, establishing negative feedback.<ref name=weisel1994/><ref>{{cite journal|vauthors=Scott CF, Silver LD, Purdon AD, Colman RW|title=Cleavage of human high molecular weight kininogen by factor XIa in vitro: Effect on structure and function|year=1985|journal=The Journal of Biological Chemistry|volume=260|issue=19|doi=10.1016/S0021-9258(19)85161-X|pages=10856–10863|pmid=3875612|doi-access=free}}</ref>
==Measurement==
Measurement of HMWK is usually done with mixing studies, in which plasma deficient in HMWK is mixed with the patient's sample and a[[ partial thromboplastin time]] (PTT) is determined. Results are expressed in % of normal - a value under 60% indicates a deficiency.


==Role in disease==
== Genetics ==
The existence of HMWK was hypothesised in the 1970s when several patients were described with a deficiency of a class of plasma protein and a prolonged [[bleeding time]]e and PTT.{{Citation needed|date=October 2011}}
There is no increased risk of bleeding or any other symptoms, so the deficiency is a condition, not a disease.


The gene for both LMWK and HMWK is located on the 3rd chromosome (3q26).<ref name="pmid2066106">{{cite journal | vauthors = Fong D, Smith DI, Hsieh WT | title = The human kininogen gene (KNG) mapped to chromosome 3q26-qter by analysis of somatic cell hybrids using the polymerase chain reaction | journal = Human Genetics | volume = 87 | issue = 2 | pages = 189–92 | date = June 1991 | pmid = 2066106 | doi = 10.1007/BF00204179 | s2cid = 30895313 }}</ref> [[Alternative splicing]] of the ''[[Kininogen 1|KNG1]]'' gene transcript gives rise to processed mRNA that differs by what is included from the last two exons of the pre-mRNA.<ref>{{cite journal|vauthors=Kitamura N, Kitagawa H, Fukushima D, Takagaki Y, Miyata T, Nakanishi S|title=Structural Organization of the Human Kininogen Gene and a Model for Its Evolution|journal=The Journal of Biological Chemistry|volume=260|issue=15|pages=8610–8617|doi=10.1016/S0021-9258(17)39516-9|year=1985|doi-access=free|pmid=2989294}}</ref><ref name=kniffingross2021>{{cite web|url=https://www.omim.org/entry/612358|title=KININOGEN 1; KNG1|website=Online Mendelian Inheritance in Man|date=3 June 2021|access-date=31 January 2024|last1=Kniffin|first1=Cassandra L.|last2=Gross|first2=Matthew B.|orig-date=Originally published 23 October 2008|id=*612358}}</ref> Consequently, HMWK protein differs from LMWK only in having a larger light chain: the heavy chain and bradykinin portions are identical.<ref name=kniffingross2021/>
==References==
{{reflist}}


== Measurement ==
==External links==

* [http://www.mgh.harvard.edu/labmed/lab/coag/handbook/CO002500.htm LMWK laboratory information]
Measurement of HMWK is usually done with mixing studies, in which plasma deficient in HMWK is mixed with the patient's sample and a [[partial thromboplastin time]] (PTT) is determined. Results are expressed in % of normal - a value under 60% indicates a deficiency.{{citation needed|date=January 2024}}
* {{OMIM|228960}}

== Clinical features ==

The existence of HMWK was hypothesised in 1975 when several patients were described with a deficiency of a class of plasma protein and a prolonged [[bleeding time]] and PTT.<ref name="pmid1202089">{{cite journal | vauthors = Colman RW, Bagdasarian A, Talamo RC, Scott CF, Seavey M, Guimaraes JA, Pierce JV, Kaplan AP | title = Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways | journal = The Journal of Clinical Investigation | volume = 56 | issue = 6 | pages = 1650–62 | date = December 1975 | pmid = 1202089 | pmc = 333144 | doi = 10.1172/JCI108247 }}</ref>
There is no increased risk of bleeding or any other symptoms, so the deficiency is a trait, not a disease.

== References ==
{{reflist}}


{{Coagulation}}
{{Coagulation}}

Latest revision as of 22:34, 31 March 2024

kininogen 1
Identifiers
SymbolKNG1
Alt. symbolsKNG, BDK
NCBI gene3827
HGNC6383
OMIM612358
RefSeqNM_001102416
UniProtP01042
Other data
LocusChr. 3 q21-qter
Search for
StructuresSwiss-model
DomainsInterPro

High-molecular-weight kininogen (HMWK or HK) is a circulating plasma protein which participates in the initiation of blood coagulation, and in the generation of the vasodilator bradykinin via the kallikrein-kinin system. HMWK is inactive until it either adheres to binding proteins beneath an endothelium disrupted by injury, thereby initiating coagulation; or it binds to intact endothelial cells or platelets for functions other than coagulation.

Other names

[edit]

In the past, HMWK has been called HMWK-kallikrein factor, Flaujeac factor (1975),[1] Fitzgerald factor (1975),[2] and Williams-Fitzgerald-Flaujeac factor, - the eponyms being for people first reported to have HMWK deficiency. Its current accepted name is to contrast it with low-molecular-weight kininogen (LMWK) which has a similar function to HMWK in the tissue (as opposed to serum) kinin-kallikrein system.

Structure and function

[edit]

HMWK is an alpha-globulin with six functional domains. It circulates as a single-chain 626 amino acid polypeptide . The heavy chain contains domains 1, 2, and 3; the light chain, domains 5 and 6. Domain 4 links the heavy and light chains in addition to a disulfide bond between positions close to the N- and C-termini.[3]

The domains contain the following functional sites:

  • Domain 1 - calcium binding
  • Domain 2 - cysteine protease inhibition
  • Domain 3 - cysteine protease inhibition; platelet and endothelial cell binding
  • Domain 4 - bradykinin generation
  • Domain 5 - heparin and cell binding; antiangiogenic properties; binding to negatively charged surfaces
  • Domain 6 - prekallikrein and factor XI binding (amino acids 420 to 510)(histidine rich)

HMWK is one of four proteins which interact to initiate the contact activation pathway (also called the intrinsic pathway) of coagulation: the other three are Factor XII, Factor XI and prekallikrein. HMWK is not enzymatically active, and functions only as a cofactor for the activation of kallikrein and factor XII. It is also necessary for the activation of factor XI by factor XIIa.

HMWK is also a precursor of bradykinin;[4] this vasodilator is released through positive feedback by kallikrein. Cleavage by kallikein results in the liberation of two peptides, one of which is bradykinin, from HMWK's fourth domain.[3]

Cleavage by kallikrein also helps HMWK to optimally function as a coactivator. The cleavage results in a change in the conformation of HMWK that may increase the accessibility of its surface binding domain, which could explain cleaved HMWK's increased affinity for negatively charged surfaces.[3] The resulting severed light and heavy chains remain connected by the aforementioned disulfide bond near the original N- and C-termini.[3]

HMWK is a strong inhibitor of cysteine proteinases. Responsible for this activity are domains 2 and 3 on its heavy chain.[5]

Cleavage of HMWK by activated factor XI abrogates HMWK's ability to act as a cofactor, establishing negative feedback.[3][6]

Genetics

[edit]

The gene for both LMWK and HMWK is located on the 3rd chromosome (3q26).[7] Alternative splicing of the KNG1 gene transcript gives rise to processed mRNA that differs by what is included from the last two exons of the pre-mRNA.[8][9] Consequently, HMWK protein differs from LMWK only in having a larger light chain: the heavy chain and bradykinin portions are identical.[9]

Measurement

[edit]

Measurement of HMWK is usually done with mixing studies, in which plasma deficient in HMWK is mixed with the patient's sample and a partial thromboplastin time (PTT) is determined. Results are expressed in % of normal - a value under 60% indicates a deficiency.[citation needed]

Clinical features

[edit]

The existence of HMWK was hypothesised in 1975 when several patients were described with a deficiency of a class of plasma protein and a prolonged bleeding time and PTT.[10] There is no increased risk of bleeding or any other symptoms, so the deficiency is a trait, not a disease.

References

[edit]
  1. ^ Wuepper KD, Miller DR, Lacombe MJ (December 1975). "Flaujeac trait. Deficiency of human plasma kininogen". The Journal of Clinical Investigation. 56 (6): 1663–72. doi:10.1172/JCI108248. PMC 333145. PMID 127805.
  2. ^ Waldmann R, Abraham JP, Rebuck JW, Caldwell J, Saito H, Ratnoff OD (April 1975). "Fitzgerald factor: a hitherto unrecognised coagulation factor". Lancet. 1 (7913): 949–51. doi:10.1016/s0140-6736(75)92008-5. PMID 48123. S2CID 24923458.
  3. ^ a b c d e Weisel JW, Nagaswami C, Woodhead JL, DeLa Cadena RA, Page JD, Colman RW (1994). "The shape of high molecular weight kininogen. Organization into structural domains, changes with activation, and interactions with prekallikrein, as determined by electron microscopy". The Journal of Biological Chemistry. 269 (13): 10100–10106. doi:10.1016/S0021-9258(17)36995-8. PMID 8144509.
  4. ^ Stefan Offermanns, Walter Rosenthal (2008). Encyclopedia of Molecular Pharmacology. Springer. pp. 673–. ISBN 978-3-540-38916-3. Retrieved 11 December 2010.
  5. ^ Higashiyama S, Ohkubo I, Ishiguro H, Kunimatsu M, Sawaki K, Sasaki M (April 1986). "Human high molecular weight kininogen as a thiol proteinase inhibitor: presence of the entire inhibition capacity in the native form of heavy chain". Biochemistry. 25 (7): 1669–75. doi:10.1021/bi00355a034. PMID 3635411.
  6. ^ Scott CF, Silver LD, Purdon AD, Colman RW (1985). "Cleavage of human high molecular weight kininogen by factor XIa in vitro: Effect on structure and function". The Journal of Biological Chemistry. 260 (19): 10856–10863. doi:10.1016/S0021-9258(19)85161-X. PMID 3875612.
  7. ^ Fong D, Smith DI, Hsieh WT (June 1991). "The human kininogen gene (KNG) mapped to chromosome 3q26-qter by analysis of somatic cell hybrids using the polymerase chain reaction". Human Genetics. 87 (2): 189–92. doi:10.1007/BF00204179. PMID 2066106. S2CID 30895313.
  8. ^ Kitamura N, Kitagawa H, Fukushima D, Takagaki Y, Miyata T, Nakanishi S (1985). "Structural Organization of the Human Kininogen Gene and a Model for Its Evolution". The Journal of Biological Chemistry. 260 (15): 8610–8617. doi:10.1016/S0021-9258(17)39516-9. PMID 2989294.
  9. ^ a b Kniffin CL, Gross MB (3 June 2021) [Originally published 23 October 2008]. "KININOGEN 1; KNG1". Online Mendelian Inheritance in Man. *612358. Retrieved 31 January 2024.
  10. ^ Colman RW, Bagdasarian A, Talamo RC, Scott CF, Seavey M, Guimaraes JA, Pierce JV, Kaplan AP (December 1975). "Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways". The Journal of Clinical Investigation. 56 (6): 1650–62. doi:10.1172/JCI108247. PMC 333144. PMID 1202089.